×

Index map, \(\sigma\)-connections, and Connes-Chern character in the setting of twisted spectral triples. (English) Zbl 1361.46055

Summary: Twisted spectral triples are a twisting of the notion of spectral triples aimed at dealing with some type III geometric situations. In the first part of the article, we give a geometric construction of the index map of a twisted spectral triple in terms of \(\sigma\)-connections on finitely generated projective modules. This clarifies the analogy with the indices of Dirac operators with coefficients in vector bundles. In the second part, we give a direct construction of the Connes-Chern character of a twisted spectral triple, in both the invertible and the noninvertible cases. Combining these two parts we obtain an analogue of the Atiyah-Singer index formula for twisted spectral triples.

MSC:

46L87 Noncommutative differential geometry
58B34 Noncommutative geometry (à la Connes)
58J20 Index theory and related fixed-point theorems on manifolds
19D55 \(K\)-theory and homology; cyclic homology and cohomology

References:

[1] M. F. Atiyah, “Global aspects of the theory of elliptic differential operators” in Proc. Internat. Congr. Math. (Moscow, 1966) , Izdat. “Mir,” Moscow, 1968, 57-64.
[2] M. F. Atiyah and I. Singer, The index of elliptic operators, I , Ann. of Math. (2) 87 (1968), 484-530. · Zbl 0164.24001 · doi:10.2307/1970715
[3] M. F. Atiyah and I. Singer, The index of elliptic operators, III , Ann. of Math. (2) 87 (1968), 546-604. · Zbl 0164.24301 · doi:10.2307/1970717
[4] N. Berline, E. Getzler, and M. Vergne, Heat Kernels and Dirac Operators , Grundlehren Math. Wiss. 298 , Springer, Berlin, 1992. · Zbl 0744.58001
[5] B. Blackadar, \(K\)-Theory for Operator Algebras , 2nd ed., Math. Sci. Res. Inst. Publ. 5 , Cambridge Univ. Press, Cambridge, 1998.
[6] J. Block and J. Fox, “Asymptotic pseudodifferential operators and index theory” in Geometric and Topological Invariants of Elliptic Operators (Brunswick, ME, 1988) , Contemp. Math. 105 , Amer. Math. Soc., Providence, 1990, 1-32. · doi:10.1090/conm/105/1047274
[7] J.-B. Bost, Principe d’Oka, \(K\)-théorie et systèmes dynamiques non commutatifs , Invent. Math. 101 (1990), 261-333. · Zbl 0719.46038 · doi:10.1007/BF01231504
[8] J.-P. Bourguignon and P. Gauduchon, Spineurs, opérateurs de Dirac et variations de métriques , Comm. Math. Phys. 144 (1992), 581-599. · Zbl 0755.53009 · doi:10.1007/BF02099184
[9] A. Connes, Noncommutative differential geometry , Publ. Math. Inst. Hautes Études Sci. 62 (1985), 257-360.
[10] A. Connes, “Cyclic cohomology and the transverse fundamental class of a foliation” in Geometric Methods in Operator Algebras (Kyoto, 1983) , Pitman Res. Notes Math. Ser. 123 , Longman Sci. Tech., Harlow, 1986, 52-144.
[11] A. Connes, Entire cyclic cohomology of Banach algebras and characters of \(\theta\)-summable Fredholm modules , \(K\)-Theory 1 (1988), 519-548. · Zbl 0657.46049 · doi:10.1007/BF00533785
[12] A. Connes, Noncommutative Geometry , Academic Press, San Diego, Calif., 1994.
[13] A. Connes and H. Moscovici, The local index formula in noncommutative geometry , Geom. Funct. Anal. 5 (1995), 174-243. · Zbl 0960.46048 · doi:10.1007/BF01895667
[14] A. Connes and H. Moscovici, Hopf algebras, cyclic cohomology and the transverse index theorem , Comm. Math. Phys. 198 (1998), 199-246. · Zbl 0940.58005 · doi:10.1007/s002200050477
[15] A. Connes and H. Moscovici, “Differentiable cyclic cohomology Hopf algebraic structures in transverse geometry” in Essays on Geometry and Related Topics , Monogr. Enseign. Math. 38 , Enseignement Math., Geneva, 2001, 217-256. · Zbl 1018.57013
[16] A. Connes and H. Moscovici, “Type III and spectral triples” in Traces in Number Theory, Geometry and Quantum Fields , Aspects Math. E38 , Vieweg, Wiesbaden, 2008, 57-71. · Zbl 1159.46041
[17] A. Connes and H. Moscovici, Modular curvature for noncommutative two-tori , J. Amer. Math. Soc. 27 (2014), 639-684. · Zbl 1332.46070 · doi:10.1090/S0894-0347-2014-00793-1
[18] A. Connes and P. Tretkoff, “The Gauss-Bonnet theorem for the noncommutative two torus” in Noncommutative Geometry, Arithmetic, and Related Topics , Johns Hopkins Univ. Press, Baltimore, Md., 2011, 141-158. · Zbl 1251.46037
[19] F. D’Andrea, Quantum groups and twisted spectral triples , preprint, [math.QA].
[20] F. Fathizadeh and M. Khalkhali, “Twisted spectral triples and Connes’ character formula” in Perspectives on Noncommutative Geometry , Fields Inst. Commun. 61 , Amer. Math. Soc., Providence, 2011, 79-101. · Zbl 1251.58010
[21] E. Getzler and A. Szenes, On the Chern character of a theta-summable module , J. Funct. Anal. 84 (1989), 343-357. · Zbl 0686.46044 · doi:10.1016/0022-1236(89)90102-X
[22] M. Greenfield, M. Marcolli, and K. Teh, Twisted spectral triples and quantum statistical mechanical systems , p-Adic Numbers Ultrametric Anal. Appl. 6 (2014), 81-104. · Zbl 1315.58006 · doi:10.1134/S2070046614020010
[23] V. Guillemin, A new proof of Weyl’s formula on the asymptotic distribution of eigenvalues , Adv. in Math. 55 (1985), 131-160. · Zbl 0559.58025 · doi:10.1016/0001-8708(85)90018-0
[24] N. Higson, “The residue index theorem of Connes and Moscovici” in Surveys in Noncommutative Geometry , Clay Math. Proc. 6 , Amer. Math. Soc., Providence, 2006, 71-126. · Zbl 1120.58017
[25] N. Hitchin, Harmonic spinors , Adv. in Math. 14 (1974), 1-55. · Zbl 0284.58016 · doi:10.1016/0001-8708(74)90021-8
[26] L. Hörmander, The Weyl calculus of pseudodifferential operators , Comm. Pure Appl. Math. 32 (1979), 360-444.
[27] B. Iochum and T. Masson, Crossed product extensions of spectral triples , to appear in J. Noncommut. Geom., preprint, [math.OA]. arXiv:1406.4642v3
[28] A. Jaffe, A. Lesniewski, and K. Osterwalder, Quantum \(K\)-theory, I: The Chern character , Comm. Math. Phys. 118 (1988), 1-14. · Zbl 0656.58048 · doi:10.1007/BF01218474
[29] J. Kaad and R. Senior, A twisted spectral triple for quantum \(SU(2)\) , J. Geom. Phys. 62 (2012), 731-739. · Zbl 1245.58004 · doi:10.1016/j.geomphys.2011.12.019
[30] C. Kassel, Le résidu non commutatif (d’après M. Wodzicki) , Astérisque 177-178 (1989), 199-229, Séminaire Bourbaki 1988/1989, no. 708.
[31] U. Krähmer and E. Wagner, “Twisted spectral triples and covariant differential calculi” in Algebra, Geometry and Mathematical Physics , Banach Center Publ. 93 , Polish Acad. Sci. Inst. Math., Warsaw, 2011, 177-188. · Zbl 1253.58003 · doi:10.4064/bc93-0-14
[32] J.-L. Loday, Cyclic Homology , Grundlehren Math. Wiss. 301 , Springer, Berlin, 1992.
[33] S. Majid, A Quantum Groups Primer , London Math. Soc. Lecture Note Ser. 292 , Cambridge Univ. Press, Cambridge, 2002.
[34] R. Melrose and V. Nistor, Homology of pseudodifferential operators, I: Manifolds with boundary , preprint, . · Zbl 0898.46060
[35] S. Moroianu and V. Nistor, “Index and homology of pseudodifferential operators on manifolds with boundary” in Perspectives in Operator Algebras and Mathematical Physics , Theta Ser. Adv. Math. 8 , Theta, Bucharest, 2008, 123-148. · Zbl 1212.58017
[36] H. Moscovici, Eigenvalue inequalities and Poincaré duality in noncommutative geometry , Comm. Math. Phys. 184 (1997), 619-628. · Zbl 0874.46044 · doi:10.1007/s002200050076
[37] H. Moscovici, “Local index formula and twisted spectral triples” in Quanta of Maths , Clay Math. Proc. 11 , Amer. Math. Soc. Providence, 2010, 465-500. · Zbl 1232.58013
[38] R. Ponge, A new short proof of the local index formula and some of its applications , Comm. Math. Phys. 241 (2003), 215-234. · Zbl 1191.58006 · doi:10.1007/s00220-004-1109-4
[39] R. Ponge and H. Wang, Noncommutative geometry and conformal geometry, III: Vafa-Witten inequality and Poincaré duality , Adv. Math. 272 (2015), 761-819. · Zbl 1311.53037 · doi:10.1016/j.aim.2014.12.009
[40] R. Ponge and H. Wang, Noncommutative geometry and conformal geometry, I: Local index formula and conformal invariants , preprint, [math.DG]. arXiv:1411.3701
[41] R. Ponge and H. Wang, Noncommutative geometry and conformal geometry, II: Connes-Chern character and the local equivariant index theorem , J. Noncomm. Geom. 10 (2016), 307-378. · Zbl 1343.58004 · doi:10.4171/JNCG/235
[42] D. Quillen, Algebra cochains and cyclic cohomology , Publ. Math. Inst. Hautes Études Sci. 68 (1988), 139-174. · Zbl 0689.57026 · doi:10.1007/BF02698546
[43] B. L. Tsygan, Homology of matrix Lie algebras over rings and the Hochschild homology , Uspekhi Mat. Nauk 38 (1983), 217-218. · Zbl 0518.17002
[44] M. Wodzicki, Local invariants of spectral asymmetry , Invent. Math. 75 (1984), 143-177. · Zbl 0538.58038 · doi:10.1007/BF01403095
[45] M. Wodzicki, Spectral asymmetry and noncommutative residue (in Russian), Ph.D. dissertation, Steklov Institute of Mathematics, Moscow, 1984. · Zbl 0538.58038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.