×

Fibonacci and Lucas numbers of the form \(2^a+3^b+5^c\). (English) Zbl 1362.11018

Summary: In this paper, we find all Fibonacci and Lucas numbers written in the form \(2^a+3^b+5^c\), in nonnegative integers \(a,b,c\), with \(\max\{a,b\}\leq c\).

MSC:

11B39 Fibonacci and Lucas numbers and polynomials and generalizations
11J86 Linear forms in logarithms; Baker’s method

Online Encyclopedia of Integer Sequences:

Numbers of the form 2^i + 3^j + 5^k, where i, j, k >= 0.

References:

[1] Y. Bugeaud, M. Mignotte and S. Siksek, Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers, Ann. of Math. (2) 163 (2006), no. 3, 969-1018. · Zbl 1113.11021 · doi:10.4007/annals.2006.163.969
[2] Y. Bugeaud, M. Mignotte, F. Luca, and S. Siksek, Fibonacci numbers at most one away from a perfect power, Elem. Math. 63 (2008), no. 2, 65-75. · Zbl 1156.11008 · doi:10.4171/EM/89
[3] Y. Bugeaud, M. Mignotte and S. Siksek, Sur les nombres de Fibonacci de la forme \(q^{k}y^{p}\), C. R. Math. Acad. Sci. Paris 339 (2004), no. 5, 327-330. · Zbl 1113.11010 · doi:10.1016/j.crma.2004.06.007
[4] A. Dujella and A. Pethö, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), no. 195, 291-306. · Zbl 0911.11018 · doi:10.1093/qjmath/49.195.291
[5] T. Koshy, Fibonacci and Lucas numbers with applications , Pure and Applied Mathematics (New York), Wiley-Interscience, New York, 2001. · Zbl 0984.11010
[6] M. Laurent, Linear forms in two logarithms and interpolation determinants. II, Acta Arith. 133 (2008), no. 4, 325-348. · Zbl 1215.11074 · doi:10.4064/aa133-4-3
[7] F. Luca, Fibonacci numbers of the form \(k^{2}+k+2\), in Applications of Fibonacci numbers, Vol. 8 (Rochester, NY, 1998) , 241-249, Kluwer Acad. Publ., Dordrecht, 1999. · Zbl 0979.11012
[8] F. Luca and L. Szalay, Fibonacci numbers of the form \(p^{a}\pm p^{b}+1\), Fibonacci Quart. 45 (2007), no. 2, 98-103. · Zbl 1228.11021
[9] F. Luca and P. Stănică, Fibonacci numbers of the form \(p^{a}\pm p^{b}\), Congr. Numer. 194 (2009), 177-183. · Zbl 1273.11030
[10] D. Marques and A. Togbé, Terms of a linear recurrence sequence which are sum of powers of a fixed integer. (Preprint).
[11] A. Pethö and R. F. Tichy, \(S\)-unit equations, linear recurrences and digit expansions, Publ. Math. Debrecen 42 (1993), no. 1-2, 145-154. · Zbl 0792.11006
[12] N. Robbins, Fibonacci numbers of the forms \(pX^{2}\pm 1\), \(pX^{3}\pm 1\), where \(p\) is prime, in Applications of Fibonacci numbers (San Jose, CA, 1986) , 77-88, Kluwer Acad. Publ., Dordrecht, 1988. · Zbl 0647.10013 · doi:10.1007/978-94-015-7801-1_9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.