Machide, Tomoya Some restricted sum formulas for double zeta values. (English) Zbl 1362.11079 Proc. Japan Acad., Ser. A 89, No. 3, 51-54 (2013). Summary: We give some restricted sum formulas for double zeta values whose arguments satisfy certain congruence conditions modulo 2 or 6, and also give an application to identities showed by Ramanujan for sums of products of Bernoulli numbers with a gap of 6. Cited in 3 Documents MSC: 11M32 Multiple Dirichlet series and zeta functions and multizeta values 11B68 Bernoulli and Euler numbers and polynomials Keywords:multiple zeta value; double zeta value; sum formula; Bernoulli number; Ramanujan’s identity PDF BibTeX XML Cite \textit{T. Machide}, Proc. Japan Acad., Ser. A 89, No. 3, 51--54 (2013; Zbl 1362.11079) Full Text: DOI arXiv Euclid OpenURL References: [1] B. C. Berndt, Ramanujan’s notebooks. Part I , Springer, New York, 1985. · Zbl 0555.10001 [2] L. Euler, Meditationes circa singulare serierum genus, Novi Comm. Acad. Sci. Petropol. 20 (1775), 140-186, reprinted in Opera omnia , ser. I, vol. 15, Teubner, Berlin, 1927, pp. 217-267. [3] H. Gangl, M. Kaneko and D. Zagier, Double zeta values and modular forms, in Automorphic forms and zeta functions , World Sci. Publ., Hackensack, NJ, 2006, pp. 71-106. · Zbl 1122.11057 [4] T. Nakamura, Restricted and weighted sum formulas for double zeta values of even weight, Šiauliai Math. Semin. 4(12) (2009), 151-155. · Zbl 1205.11099 [5] Y. Ohno and W. Zudilin, Zeta stars, Commun. Number Theory Phys. 2 (2008), no. 2, 325-347. · Zbl 1228.11132 [6] S. Ramanujan, Some properties of Bernoulli’s numbers, J. Indian Math. Soc. 3 (1911), 219-234, reprinted in Collected papers of Srinivasa Ramanujan , Cambridge Univ. Press, Cambridge, 1927, pp. 1-14. · JFM 42.0460.02 [7] S. S. Wagstaff, Jr., Ramanujan’s paper on Bernoulli numbers, J. Indian Math. Soc. (N.S.) 45 (1981), no. 1-4, 49-65. · Zbl 0636.10010 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.