Bosch, Pierre; Simon, Thomas On the infinite divisibility of inverse beta distributions. (English) Zbl 1362.60012 Bernoulli 21, No. 4, 2552-2568 (2015). Summary: We show that all negative powers \(\beta_{a,b}^{-s}\) of the beta distribution are infinitely divisible. The case \(b\leq1\) follows by complete monotonicity, the case \(b>1\), \(s\geq 1\) by hyperbolically complete monotonicity and the case \(b>1\), \(s<1\) by a Lévy perpetuity argument involving the hypergeometric series. We also observe that \(\beta_{a,b}^{-s}\) is self-decomposable if and only if \(2a+b+s+bs\geq 1\), and that in this case it is not necessarily a generalized gamma convolution. On the other hand, we prove that all negative powers of the gamma distribution are generalized gamma convolutions, answering to a recent question of L. Bondesson. Cited in 6 Documents MSC: 60E07 Infinitely divisible distributions; stable distributions 33C05 Classical hypergeometric functions, \({}_2F_1\) Keywords:beta distribution; gamma distribution; generalized gamma convolution; hyperbolically complete monotonicity; hypergeometric series; Lévy perpetuity; self-decomposability; Stieltjes transform PDFBibTeX XMLCite \textit{P. Bosch} and \textit{T. Simon}, Bernoulli 21, No. 4, 2552--2568 (2015; Zbl 1362.60012) Full Text: DOI arXiv Euclid References: [1] Anderson, G.D., Vamanamurthy, M.K. and Vuorinen, M. (2007). Generalized convexity and inequalities. J. Math. Anal. Appl. 335 1294-1308. · Zbl 1125.26017 · doi:10.1016/j.jmaa.2007.02.016 [2] Bertoin, J. (1996). Lévy Processes. Cambridge Tracts in Mathematics 121 . Cambridge: Cambridge Univ. Press. · Zbl 0861.60003 [3] Bertoin, J. and Yor, M. (2002). On the entire moments of self-similar Markov processes and exponential functionals of Lévy processes. Ann. Fac. Sci. Toulouse Math. (6) 11 33-45. · Zbl 1031.60038 · doi:10.5802/afst.1016 [4] Bertoin, J. and Yor, M. (2005). Exponential functionals of Lévy processes. Probab. Surv. 2 191-212. · Zbl 1189.60096 · doi:10.1214/154957805100000122 [5] Bondesson, L. (1992). Generalized Gamma Convolutions and Related Classes of Distributions and Densities. Lecture Notes in Statistics 76 . New York: Springer. · Zbl 0756.60015 [6] Bondesson, L. (2014). A class of probability distributions that is closed with respect to addition as well as multiplication of independent random variables. J. Theoret. Probab. To appear. Available at . · Zbl 1375.60053 [7] Bosch, P. (2014). HCM property and the half-Cauchy distribution. Available at . arXiv:1402.1059 · Zbl 1366.60049 [8] Bosch, P. and Simon, T. (2013). On the self-decomposability of the Fréchet distribution. Indag. Math. ( N.S. ) 24 626-636. · Zbl 1287.60023 · doi:10.1016/j.indag.2013.04.006 [9] Bustoz, J. and Ismail, M.E.H. (1986). On gamma function inequalities. Math. Comp. 47 659-667. · Zbl 0607.33002 · doi:10.2307/2008180 [10] Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F.G. (1953). Higher Transcendental Functions Vol. I and II . New York: McGraw-Hill. · Zbl 0052.29502 [11] Gjessing, H.K. and Paulsen, J. (1997). Present value distributions with applications to ruin theory and stochastic equations. Stochastic Process. Appl. 71 123-144. · Zbl 0943.60098 · doi:10.1016/S0304-4149(97)00072-0 [12] James, L.F., Roynette, B. and Yor, M. (2008). Generalized gamma convolutions, Dirichlet means, Thorin measures, with explicit examples. Probab. Surv. 5 346-415. · Zbl 1189.60035 · doi:10.1214/07-PS118 [13] Janson, S. (2010). Moments of gamma type and the Brownian supremum process area. Probab. Surv. 7 1-52. · Zbl 1194.60019 · doi:10.1214/10-PS160 [14] Jedidi, W. and Simon, T. (2013). Further examples of GGC and HCM densities. Bernoulli 19 1818-1838. · Zbl 1303.60016 · doi:10.3150/12-BEJ431 [15] Klein, F. (1890). Ueber die Nullstellen der hypergeometrischen Reihe. Math. Ann. 37 573-590. · JFM 22.0444.02 · doi:10.1007/BF01724773 [16] Sato, K.-i. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics 68 . Cambridge: Cambridge Univ. Press. Translated from the 1990 Japanese original. Revised by the author. · Zbl 0973.60001 [17] Schilling, R.L., Song, R. and Vondraček, Z. (2010). Bernstein Functions. Theory and Applications. De Gruyter Studies in Mathematics 37 . Berlin: de Gruyter. [18] Simon, T. (2014). Comparing Fréchet and positive stable laws. Electron. J. Probab. 19 1-25. · Zbl 1288.60018 · doi:10.1214/EJP.v19-3058 [19] Steutel, F.W. and Van Harn, K. (2003). Infinite Divisibility of Probability Distributions on the Real Line . New York: Dekker. · Zbl 1063.60001 [20] Van Vleck, E.B. (1902). A determination of the number of real and imaginary roots of the hypergeometric series. Trans. Amer. Math. Soc. 3 110-131. · JFM 33.0460.04 · doi:10.1090/S0002-9947-1902-1500590-4 [21] Vervaat, W. (1979). On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables. Adv. in Appl. Probab. 11 750-783. · Zbl 0417.60073 · doi:10.2307/1426858 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.