×

Linear independence of values of a certain generalization of the exponential function. II. (English) Zbl 1364.11134

Summary: The arithmetical nature of values at rational points of the hypergeometric series \[ _QG_R(x) := \sum_{n=0}^{\infty} \frac{R(1)R(2) \cdots R(n)}{Q(1)Q(2)\cdots Q(n)} x^n \] is studied. \(R\) and \(Q\) are polynomials with integer coefficients. Using deep results on higher congruences going essentially back to Frobenius, Dedekind, Nagell and Schinzel a measure of \(\mathbb{Q}\)-linear independence of such values is given.
In contrast to former investigations no preseribed factorisations of the polynomials \(Q\) and \(R\) are necessary. Here, however, congruences to those primes \(p\) are used for which \(Q\) mod \(p\) splits completely into a product of linear factors. To get the measure the fact is used that these primes have a Dirichlet-density.
In six applications results, proven in some particular cases by different techniques by F. Carlson [Ark. Mat. Astron. Fys. 25, No. 7, 1–13 (1935; Zbl 0011.39202)], K. Inkeri [Nieuw Arch. Wiskd., III. Ser. 24, 226–230 (1976; Zbl 0338.10026)], P. L. Ivankov [Math. USSR, Sb. 72, No. 1, (1992; Zbl 0776.11039); translation from Mat. Sb. 182, No. 2, 282–302 (1991); Russ. Math. 51, No. 7, 45–49 (2007; Zbl 1154.33003); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2007, No. 7, 48–52 (2007)], J. Popken [Über arithmetische Eigenschaften analytischer Funktionen. Groningen: Diss (1935; Zbl 0013.27004)] and P. Bundschuh and the author [Analysis, München 32, No. 1, 67–83 (2012; Zbl 1305.11062)] are derived.
For Part I, see [the author, ibid. 35, 339–357 (2006; Zbl 1192.11043)].

MSC:

11J72 Irrationality; linear independence over a field
11J82 Measures of irrationality and of transcendence

References:

[1] P. Bundschuh and R. Wallisser, Some arithmetical applications of Newton’s interpolation series , Analysis (Munich) 32 (2012), 1001-1018. · Zbl 1305.11062 · doi:10.1524/anly.2012.1117
[2] F. Carlson, Sur une propriété arithmétique de quelques functions entières , Ark. Mat. Astr. Fys. 25A (1935), 1-13. · Zbl 0011.39202
[3] R. Dedekind, Über den Zusammenhang zwischen der Theorie der Ideale und der höheren Kongruenzen , Abh. Akad. Wiss. Göttingen, (1878).
[4] N.I. Fel’dman and Yu.V. Nesterenko, Transcendental Numbers, Number Theory IV , Encycl. of Math. Sc. 44 , Springer 1998.
[5] G. Frobenius, Über Beziehungen zwischen den Primidealen eines algebraischen Körpers und den Substitutionen einer Gruppe , Berl. Ber., 1886, I.S. 683-703. · JFM 27.0091.04
[6] L. Fjellstedt, Bemerkungen über gleichzeitige Lösbarkeit von Kongruenzen , Ark. Mat. 3 (1955), 193-198. · Zbl 0064.03702 · doi:10.1007/BF02589356
[7] A.I. Galochkin, On effective bounds for certain linear forms , New Advances in Transcendence Theory, Cambridge Univ. Press, Cambridge (1988), 207-214. · Zbl 0666.10022 · doi:10.1017/CBO9780511897184.013
[8] I. Gerst and J. Brillhart, On the prime divisors of polynomials , Amer. Math. Monthly 78 (1971), 250-266. · Zbl 0214.30604 · doi:10.2307/2317521
[9] J. Hadamard, Essai sur l’étude des fonctions donneés par leur dévelopement de Taylor , Math. Pures Appl. Sér. 4 8 (1892). · JFM 24.0359.01
[10] H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper , Teil II: Reziprozitätsgesetze. Jber. Deutsch. Math. Verein 36 (1930). · JFM 56.0165.01
[11] H. Hasse, Über das Problem der Primzerlegung in galoischen Zahlkörpern , Vortrag in der Berliner Math. Gesellschaft (1952), Preprint etenda. · Zbl 0049.02702
[12] Ch. Hermite, Sur la fonction exponentielle , C.R. Acad. Sci, Paris, Sér. A. (1873).
[13] D. Hilbert, Über die Transzendenz der Zahlen \(e\) und \(\pi\) , Math. Ann. 43 (1893), 216-219. · JFM 25.0734.01 · doi:10.1007/BF01443645
[14] A. Hurwitz, Beweis der Transzendenz der Zahl \(e\) , Göttinger Nachrichten Nr. 4 (1893). · JFM 25.0734.02
[15] K. Inkeri, On the irrationality of certain values of elementary transcendental functions , Nieuw. Arch. Wisk. (3) 24 (1976), 226-230. · Zbl 0338.10026
[16] Zhou Li and L. Markov, Recurrent proofs of the irrationality of certain trigomometric values Amer. Math. Monthly 117 (2010), 360-362. · Zbl 1222.11093 · doi:10.4169/000298910X480838
[17] P.L. Ivankov, On arithmetic properties of the values of hypergeometric functions , Math. USSR Sb. 72 (1992), no.1, 267-286. · Zbl 0776.11039 · doi:10.1070/SM1992v072n01ABEH001413
[18] P.L. Ivankov, The values of certain hypergeometric functions with irrational parameters , Russian Mathematics (Izv. Vuz) 51 (2007), no. 7, 45-49. · Zbl 1154.33003 · doi:10.3103/S1066369X07070055
[19] L. Kronecker, Vorlesungen über Zahlentheorie , Bd. 1 , Teubner 1901, Reprint Springer 1978.
[20] F. Lindemann, Über die Zahl \(\pi\) , Math. Ann. 20 (1882), 213-225. · JFM 14.0369.04 · doi:10.1007/BF01446522
[21] T. Nagell, Généralisation d’un théorème de Tchebycheff , Math. Pures Appl. ( \(8^e\) série) 4 (1921), 343-356.
[22] T. Nagell, Sur les diviseurs premiers de polynomes , Acta Arithmetica XV (1969), 235-244. · Zbl 0181.05501
[23] J. Neukirch, Algebraische Zahlentheorie , Springer-Verlag 1992, Nachdruck 2007. · Zbl 0747.11001
[24] I. Niven, Irrational numbers , The Carus Mathematical Monographs no. 11 (1956). · Zbl 0070.27101
[25] O. Perron, Irrationalzahlen , Chelsea, New York, 1951.
[26] J. Popken, Über arithmetische Eigenschaften analytischer Funktionen , Dissertation Amsterdam 1935. · Zbl 0013.27004
[27] A. Schinzel, Private communication (2006).
[28] A.B. Shidlowskii, Transcendental Numbers , De Gruyter Studies in Mathematics 12, Berlin-New York 1989.
[29] Th. Skolem, Some theorems on irrationality and linear independence , Skand. Kongr. 11 , Trondheim 1949, 77-98. · Zbl 0048.03304
[30] V.G. Sprindzuk, The irrationality of the values of certain transcendental functions , Akad. Nauk SSSR Ser. Mat. 32 (1968).
[31] R. Wallisser, Linear independence of values of a certain generalisation of the exponential function - a new proof of a theorem of Carlson , Journal de Theórie des Nombres de Bordeaux 17 (2005), 381-396. · Zbl 1096.11024 · doi:10.5802/jtnb.496
[32] R. Wallisser, A measure for the linear independence of values of a certain generalization of the exponential function , Functiones et Approximatio XXXV (2006), 339-357. · Zbl 1192.11043 · doi:10.7169/facm/1229442632
[33] K. Weierstrass, Über die Ludolphsche Zahl , Sitzungsber. Preuss. Akad. Wiss (1885), 1067-1085. · JFM 17.0414.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.