×

Strong convergence of iterative algorithm for a new system of generalized \(H(\cdots,\cdot)-\eta\)-cocoercive operator inclusions in Banach spaces. (English) Zbl 1364.47010

Summary: We introduce and study a new system of generalized \(H(\cdots,\cdot)-\eta\)-cocoercive operator inclusions in Banach spaces. Using the resolvent operator technique associated with \(H(\cdots,\cdot)-\eta\)-cocoercive operators, we suggest and analyze a new generalized algorithm of nonlinear set-valued variational inclusions and establish strong convergence of iterative sequences produced by the method. We highlight the applicability of our results by examples in function spaces.

MSC:

47J25 Iterative procedures involving nonlinear operators
47J22 Variational and other types of inclusions
47H06 Nonlinear accretive operators, dissipative operators, etc.

References:

[1] Adly, S., Perturbed algorithms and sensitivity analysis for a general class of variational inclusions, Journal of Mathematical Analysis and Applications, 201, 2, 609-630 (1996) · Zbl 0856.65077 · doi:10.1006/jmaa.1996.0277
[2] Alotaibi, A.; Kumar, V.; Hussain, N., Convergence comparison and stability of Jungck-Kirk type algorithms for common fixed point problems, Fixed Point Theory and Applications, 2013 (2013) · Zbl 1476.47088 · doi:10.1186/1687-1812-2013-173
[3] Ceng, L. C.; Husain, N.; Latif, A.; Yao, J. C., Strong convergence for solving general system of variational inequalities and fixed point problems in Banach spaces, Journal of Inequalities and Applications, 2013 (2013) · Zbl 1357.49029 · doi:10.1186/1029-242X-2013-334
[4] Feng, H. R.; Ding, X. P., A new system of generalized nonlinear quasi-variational-like inclusions with \(A\)-monotone operators in Banach spaces, Journal of Computational and Applied Mathematics, 225, 2, 365-373 (2009) · Zbl 1161.65048 · doi:10.1016/j.cam.2008.07.048
[5] Lan, H.-Y.; Cho, Y. J.; Verma, R. U., Nonlinear relaxed cocoercive variational inclusions involving \((A, \eta)\)-accretive mappings in Banach spaces, Computers and Mathematics with Applications, 51, 9-10, 1529-1538 (2006) · Zbl 1207.49011 · doi:10.1016/j.camwa.2005.11.036
[6] Fang, Y.-P.; Huang, N.-J., \(H\)-accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces, Applied Mathematics Letters, 17, 6, 647-653 (2004) · Zbl 1056.49012 · doi:10.1016/S0893-9659(04)90099-7
[7] Wang, Z. B.; Ding, X. P., \(H \left(\left(., .\right), \eta\right)\)-accretive operators with an application for solving set-valued variational inclusions in Banach spaces, Computers and Mathematics with Applications, 59, 4, 1559-1567 (2010) · Zbl 1189.49027 · doi:10.1016/j.camwa.2009.11.003
[8] Zou, Y.-Z.; Huang, N.-J., \(H(., .)\)-accretive operator with an application for solving variational inclusions in Banach spaces, Applied Mathematics and Computation, 204, 2, 809-816 (2008) · Zbl 1170.65043 · doi:10.1016/j.amc.2008.07.024
[9] Jin, M.-M., Convergence and stability of iterative algorithm for a new system of \((A, \eta)\)-accretive mapping inclusions in Banach spaces, Computers and Mathematics with Applications, 56, 9, 2305-2311 (2008) · Zbl 1165.65352 · doi:10.1016/j.camwa.2008.03.053
[10] Lan, H.-Y., Stability of iterative processes with errors for a system of nonlinear \((A, \eta)\)-accretive variational inclusions in Banach spaces, Computers and Mathematics with Applications, 56, 1, 290-303 (2008) · Zbl 1145.49302 · doi:10.1016/j.camwa.2007.12.007
[11] Luo, X.-P.; Huang, N.-J., \( \left(H, \phi\right) - \eta -\) monotone operators in Banach spaces with an application to variational inclusions, Applied Mathematics and Computation, 216, 4, 1131-1139 (2010) · Zbl 1222.47079 · doi:10.1016/j.amc.2010.02.005
[12] Xu, Z.; Wang, Z., A Generalized mixed variational inclusion involving \((H \left(., .\right), \eta)\)-monotone operators in Banach spaces, Journal of Mathematics Research, 2, 3, 47-56 (2010) · Zbl 1219.47071
[13] Verma, R. U., Approximation solvability of a class of nonlinear set-valued variational inclusions involving \((A, \eta)\)-monotone mappings, Journal of Mathematical Analysis and Applications, 337, 2, 969-975 (2008) · Zbl 1140.49008 · doi:10.1016/j.jmaa.2007.01.114
[14] Lan, H.-Y., Nonlinear parametric multi-valued variational inclusion systems involving \((A, \eta )\)-accretive mappings in Banach spaces, Nonlinear Analysis: Theory, Methods & Applications, 69, 5-6, 1757-1767 (2008) · Zbl 1357.49039 · doi:10.1016/j.na.2007.07.021
[15] Lan, H.-Y., \((A, \eta)\)-accretive mappings and set-valued variational inclusions with relaxed cocoercive mappings in Banach spaces, Applied Mathematics Letters, 20, 5, 571-577 (2007) · Zbl 1136.47045 · doi:10.1016/j.aml.2006.04.025
[16] Su, C.-L., Finger shape expansion and recognition by wavelet transform, Applied Mathematics and Computation, 190, 2, 1583-1592 (2007) · Zbl 1124.94005 · doi:10.1016/j.amc.2007.02.040
[17] Lan, H.-Y.; Cui, Y.-S.; Fu, Y., New approximation-solvability of general nonlinear operator inclusion couples involving \((A, \eta, m)\)-resolvent operators and relaxed cocoercive type operators, Communications in Nonlinear Science and Numerical Simulation, 17, 4, 1844-1851 (2012) · Zbl 1272.47081 · doi:10.1016/j.cnsns.2011.09.005
[18] Hussain, N.; Rafiq, A., On modified implicit Mann iteration method involving strictly hemicontractive mappings in smooth Banach spaces, Journal of Computational Analysis and Applications, 15, 5, 892-902 (2013) · Zbl 1283.47061
[19] Hussain, N.; Rafiq, A.; Ciric, L. B., Stability of the Ishikawa iteration scheme with errors for two strictly hemicontractive operators in Banach spaces, Fixed Point Theory and Applications, 2012 (2012) · Zbl 1475.47057 · doi:10.1186/1687-1812-2012-160
[20] Khan, S. H.; Rafiq, A.; Hussain, N., A three-step iterative scheme for solving nonlinear \(\phi \)-strongly accretive operator equations in Banach spaces, Fixed Point Theory and Applications, 2012 (2012) · Zbl 1475.47064 · doi:10.1186/1687-1812-2012-149
[21] Ceng, L.-C.; Khan, A. R.; Ansari, Q. H.; Yao, J.-C., Viscosity approximation methods for strongly positive and monotone operators, Fixed Point Theory, 10, 1, 35-71 (2009) · Zbl 1196.47044
[22] Ahmad, R.; Mursaleen, M., System of generalized \(H\)-resolvent equations and the corresponding system of generalized variational inclusions, Hacettepe Journal of Mathematics and Statistics, 41, 1, 33-45 (2012) · Zbl 1273.47100
[23] Ahmad, R.; Dilshad, M.; Wong, M.-M.; Yao, J.-C., Generalized set-valued variational-like inclusions involving \(H(., .)-\eta \)-cocoercive operator in Banach spaces, Journal of Inequalities and Applications, 2012 (2012) · Zbl 1286.47040 · doi:10.1186/1029-242X-2012-149
[24] Nadler, S. B., Multivalued contraction mappings, Pacific Journal of Mathematics, 30, 3, 457-488 (1969) · Zbl 0187.45002
[25] Cioranescu, I., Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Mathematics and Its Applications, 62 (1990), Dordrecht, The Netherlands: Kluwer Academic Publishers, Dordrecht, The Netherlands · Zbl 0712.47043 · doi:10.1007/978-94-009-2121-4
[26] Petryshyn, W. V., A characterization of strict convexity of Banach spaces and other uses of duality mappings, Journal of Functional Analysis, 6, 2, 282-291 (1970) · Zbl 0199.44004 · doi:10.1016/0022-1236(70)90061-3
[27] Ahmad, R.; Akram, M.; Yao, J. C., Generalized monotone mapping with an application for solving a variational inclusion problem, Journal of Optimization Theroy and Applications, 157, 2, 324-346 (2013) · Zbl 1268.49007 · doi:10.1007/s10957-012-0182-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.