×

zbMATH — the first resource for mathematics

Fixed point of a new three-step iteration algorithm under contractive-like operators over normed spaces. (English) Zbl 1364.47026
Summary: We introduce a new three-step iteration scheme and prove that this new iteration scheme is convergent to fixed points of contractive-like operators. Also, by providing an example, we show that our new iteration method is faster than another iteration method due to S. Suantai [J. Math. Anal. Appl. 311, No. 2, 506–517 (2005; Zbl 1086.47057)]. Furthermore, it is shown that this new iteration method is equivalent to some other iteration methods in the sense of convergence. Finally, it is proved that this new iteration method is \(T\)-stable.

MSC:
47J25 Iterative procedures involving nonlinear operators
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
65J15 Numerical solutions to equations with nonlinear operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agarwal, R. P.; O’Regan, O.; Sahu, D. R., Iterative construction of fixed points of nearly asymptotically non expansive mappings, Journal of Nonlinear and Convex Analysis, 8, 1, 6179-6189, (2007)
[2] Berinde, V., On the convergence of the Ishikawa iteration in the class of quasi contractive operators, Acta Mathematica Universitatis Comenianae, 73, 1, 119-126, (2004) · Zbl 1100.47054
[3] Chugh, R.; Kumar, V., Strong convergence of SP iterative scheme for Quasi-contractive operators, International Journal of Computer Applications, 31, 5, 21-27, (2011)
[4] Chugh, R.; Kumar, V.; Kumar, S., Strong convergence of a new three step iterative scheme in Banach space, American Journal of Computational Mathematics, 2, 345-357, (2012)
[5] Gürsoy, F.; Karakaya, V.; Rhoades, B. E., The equivalence among new multistep iteration, S-iteration and some other iterative schemes
[6] Ishikawa, S., Fixed points by a new iteration method, Proceedings of the American Mathematical Society, 44, 147-150, (1974) · Zbl 0286.47036
[7] Mann, W. R., Mean value methods in iterations, Proceedings of the American Mathematical Society, 4, 506-510, (1953) · Zbl 0050.11603
[8] Noor, M. A., New approximation schemes for general variational inequalities, Journal of Mathematical Analysis and Applications, 251, 1, 217-229, (2000) · Zbl 0964.49007
[9] Olantiwo, M., Some stability and strong convergence results for the Jungck-Ishikawa iteration process, Creative Mathematics and Informatics, 17, 33-42, (2008) · Zbl 1199.47282
[10] Phuengrattana, W.; Suantai, S., On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval, Journal of Computational and Applied Mathematics, 235, 9, 3006-3014, (2011) · Zbl 1215.65095
[11] Suantai, S., Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings, Journal of Mathematical Analysis and Applications, 311, 2, 506-517, (2005) · Zbl 1086.47057
[12] Thianwan, S., Common fixed points of new iterations for two asymptotically nonexpansive nonself-mappings in a Banach space, Journal of Computational and Applied Mathematics, 224, 2, 688-695, (2009) · Zbl 1161.65043
[13] Rhoades, B. E.; Soltuz, S. M., On the equivalence of Mann and Ishikawa iteration methods, International Journal of Mathematics and Mathematical Sciences, 2003, 7, 451-459, (2003) · Zbl 1014.47052
[14] Rhoades, B. E.; Soltuz, S. M., The equivalence between Mann-Ishikawa iterations and multistep iteration, Nonlinear Analysis, Theory, Methods and Applications, 58, 1-2, 219-228, (2004) · Zbl 1064.47070
[15] Berinde, V., Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators, Fixed Point Theory and Applications, 2004, 2, 97-105, (2004) · Zbl 1090.47053
[16] Hussain, N.; Rafiq, A.; Damjanović, B.; Lazović, R., On rate of convergence of various iterative schemes, Fixed Point Theory and Applications, 2011, 45, (2011) · Zbl 1315.47065
[17] Qing, Y.; Rhoades, B. E., Comments on the rate of convergence between mann and ishikawa iterations applied to zamfirescu operators, Fixed Point Theory and Applications, 2008, (2008) · Zbl 1203.47076
[18] Rhoades, B. E.; Soltuz, S. M., The equivalence of mann iteration and ishikawa iteration for non-lipschitzian operators, International Journal of Mathematics and Mathematical Sciences, 2003, 42, 2645-2651, (2003) · Zbl 1045.47058
[19] Rhoades, B. E.; Soltuz, S. M., The equivalence between the convergences of Ishikawa and Mann iterations for an asymptotically pseudocontractive map, Journal of Mathematical Analysis and Applications, 283, 2, 681-688, (2003) · Zbl 1045.47057
[20] Rhoades, B. E.; Soltuz, S. M., The equivalence between the Mann and Ishikawa iterations dealing with generalized contractions, International Journal of Mathematics and Mathematical Sciences, 2006, (2006) · Zbl 1124.47048
[21] Rhoades, B. E.; Soltuz, S. M., The equivalence between the convergences of Ishikawa and Mann iterations for an asymptotically nonexpansive in the intermediate sense and strongly successively pseudocontractive maps, Journal of Mathematical Analysis and Applications, 289, 1, 266-278, (2004) · Zbl 1053.47055
[22] Soltuz, S. M., The equivalence of Picard, Mann, and Ishikawa iterations dealing with quasi- contractive operators, Mathematical Communications, 10, 81-89, (2005) · Zbl 1089.47051
[23] Rafiq, A., On the equivalence of Mann and Ishikawa iteration methodes with errors, Mathematical Communications, 11, 143-152, (2006) · Zbl 1157.47049
[24] Soltuz, S. M., The equivalence between Krasnoselkij, Mann, Ishikawa, Noor and multistep iteration, Mathematical Communications, 12, 53-61, (2007) · Zbl 1143.47043
[25] Zhiqun, X., Remarks of equivalence among Picard, Mann, and Ishikawa Iterations in normed spaces, Fixed Point Theory and Applications, 2007, (2007) · Zbl 1155.47316
[26] Harder, A. M.; Hicks, T. L., Stability results for fixed point iteration procedures, Mathematica Japonica, 33, 693-706, (1988) · Zbl 0655.47045
[27] Harder, A. M.; Hicks, T. L., A stable iteration procedure for nonexpansive mappings, Mathematica Japonica, 33, 687-692, (1988) · Zbl 0655.47046
[28] Rhoades, B. E., Fixed point theorems and stability results for fixed point iteration procedures, Indian Journal of Pure and Applied Mathematics, 21, 1, 1-9, (1990) · Zbl 0692.54027
[29] Rhoades, B. E., Fixed point theorems and stability results for fixed point iteration procedures. II, Indian Journal of Pure and Applied Mathematics, 24, 11, 691-703, (1993) · Zbl 0794.54048
[30] Osilike, M. O., Stability results for fixed point iteration procedures, Journal of Nigerian Mathematical Society, 26, 10, 937-945, (1995) · Zbl 0847.47043
[31] Osilike, M. O.; Udomene, A., Short proofs of stability results for fixed point iteration procedures for a class of contractive-type mappings, Indian Journal of Pure and Applied Mathematics, 30, 12, 1229-1234, (1999) · Zbl 0955.47038
[32] Ostrowski, M., The round-off stability of iterations, Zeitschrift für Angewandte Mathematik und Mechanik, 47, 2, 77-81, (1967) · Zbl 0149.36601
[33] Berinde, V., Iterative Approximation of Fixed Points, (2007), Berlin, Germany: Springer, Berlin, Germany · Zbl 1165.47047
[34] Singh, S. L.; Prasad, B., Some coincidence theorems and stability of iterative procedures, Computers and Mathematics with Applications, 55, 11, 2512-2520, (2008) · Zbl 1142.65360
[35] Picard, E., Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives, Journal de Mathématiques Pures et Appliquées, 6, 145-210, (1890) · JFM 22.0357.02
[36] Imoru, C. O.; Olatinwo, M. O., On the stability of Picard and Mann iteration processes, Carpathian Journal of Mathematics, 19, 2, 155-160, (2003) · Zbl 1086.47512
[37] Zamfirescu, T., Fix point theorems in metric spaces, Archiv der Mathematik, 23, 1, 292-298, (1972) · Zbl 0239.54030
[38] Kannan, R., Some results on fixed points, Bulletin of Calcutta Mathematical Society, 10, 71-76, (1968) · Zbl 0209.27104
[39] Chatterjea, S. K., Fixed point theorems, Comptes Rendus de l’Academie Bulgare des Sciences, 25, 727-730, (1972) · Zbl 0274.54033
[40] Schaefer, H., Uber die methode sukzessiver approximationen, Jahresbericht-Deutsche Mathematiker-Vereinigung, 59, 131-140, (1957) · Zbl 0077.11002
[41] Gürsoy, F.; Karakaya, V.; Rhoades, B. E., Data dependence results of new multistep and S-iterative schemes for contractive-like operators, Fixed Point Theory and Applications, 2013, 76, (2013) · Zbl 1423.47041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.