×

Transcendence tests for Mahler functions. (English) Zbl 1365.11092

The authors propose two tests for transcendence of Mahler functions \(F(z)\). The first one is a “quick” test based on the notion of the eigenvalue \(\lambda_{F}\) of a Mahler function. The second test is a little bit slower, however more general and depends on the rank of a certain Hankel matrix determined by the initial coefficients of \(F(z)\). The eigenvalue \(\lambda_{F}\) has properties which are similar to Perron-Frobenius theory for real matrices with non-negative entries. As a nice example, a short proof for the transcendence of the generating function of the Thue-Morse sequence is presented.

MSC:

11J91 Transcendence theory of other special functions
39A06 Linear difference equations
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Adamczewski, Boris, Non-converging continued fractions related to the Stern diatomic sequence, Acta Arith., 142, 1, 67-78 (2010) · Zbl 1210.11077
[2] Adamczewski, Boris; Bugeaud, Yann, On the complexity of algebraic numbers. I. Expansions in integer bases, Ann. of Math. (2), 165, 2, 547-565 (2007) · Zbl 1195.11094
[3] Adamczewski, Boris; Rivoal, Tanguy, Irrationality measures for some automatic real numbers, Math. Proc. Cambridge Philos. Soc., 147, 3, 659-678 (2009) · Zbl 1205.11080
[4] B{\'e}zivin, Jean-Paul, Sur une classe d’\'equations fonctionnelles non lin\'eaires, Funkcial. Ekvac., 37, 2, 263-271 (1994) · Zbl 0810.39006
[5] Brent, Richard P.; Coons, Michael; Zudilin, Wadim, Algebraic independence of Mahler functions via radial asymptotics, Int. Math. Res. Not. IMRN, 2, 571-603 (2016) · Zbl 1415.11104
[6] Coons, Michael, The transcendence of series related to Stern’s diatomic sequence, Int. J. Number Theory, 6, 1, 211-217 (2010) · Zbl 1250.11015
[7] Coons, Michael, Extension of some theorems of W. Schwarz, Canad. Math. Bull., 55, 1, 60-66 (2012) · Zbl 1284.11102
[8] Coons, Michael, Transcendental solutions of a class of minimal functional equations, Canad. Math. Bull., 56, 2, 283-291 (2013) · Zbl 1310.11018
[9] de Bruijn, N. G., On Mahler’s partition problem, Nederl. Akad. Wetensch., Proc., 51, 659-669 = Indagationes Math. 10, 210-220 (1948) (1948) · Zbl 0030.34502
[10] Dilcher, Karl; Stolarsky, Kenneth B., Stern polynomials and double-limit continued fractions, Acta Arith., 140, 2, 119-134 (2009) · Zbl 1250.11016
[11] Dumas, Philippe, R\'ecurrences mahl\'eriennes, suites automatiques, \'etudes asymptotiques, 241 pp. (1993), Institut National de Recherche en Informatique et en Automatique (INRIA), Rocquencourt
[12] Dumas, Philippe; Flajolet, Philippe, Asymptotique des r\'ecurrences mahl\'eriennes: le cas cyclotomique, J. Th\'eor. Nombres Bordeaux, 8, 1, 1-30 (1996) · Zbl 0869.11080
[13] Efgrafov, M. A., A new proof of Perron’s theorem, Izvestiya Akad. Nauk SSSR. Ser. Mat., 17, 77-82 (1953)
[14] Evgrafov, M. A., The asymptotic behaviour of a solution of difference equations, Dokl. Akad. Nauk SSSR, 121, 26-29 (1958) · Zbl 0084.29401
[15] F1908 G. Frobenius, \"Uber Matrizen aus positiven Elementen, S.-B. Preuss. Akad. Wiss. (Berlin) (1908), 471-476. · JFM 39.0213.03
[16] F1909 \bysame , \"Uber Matrizen aus positiven Elementen, II, S.-B. Preuss. Akad. Wiss. (Berlin) (1909), 514-518. · JFM 40.0202.02
[17] F1912 \bysame , \"Uber Matrizen aus nicht negativen Elementen, S.-B. Preuss. Akad. Wiss. (Berlin) (1912), 456-477. · JFM 43.0204.09
[18] Mahler, Kurt, Arithmetische Eigenschaften der L\"osungen einer Klasse von Funktionalgleichungen, Math. Ann., 101, 1, 342-366 (1929) · JFM 55.0115.01
[19] Mahler, Kurt, Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen, Math. Z., 32, 1, 545-585 (1930) · JFM 56.0186.01
[20] Mahler, Kurt, Uber das Verschwinden von Potenzreihen mehrerer Ver\"anderlichen in speziellen Punktfolgen, Math. Ann., 103, 1, 573-587 (1930) · JFM 56.0185.03
[21] Mahler, Kurt, On a special functional equation, J. London Math. Soc., 15, 115-123 (1940) · Zbl 0027.15704
[22] Perron, Oskar, Grundlagen f\"ur eine Theorie des Jacobischen Kettenbruchalgorithmus, Math. Ann., 64, 1, 1-76 (1907) · JFM 38.0262.01
[23] Perron, Oskar, Zur Theorie der Matrices, Math. Ann., 64, 2, 248-263 (1907) · JFM 38.0202.01
[24] Whittaker, E. T.; Watson, G. N., A course of modern analysis, An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions. Reprint of the fourth (1927) edition. Cambridge Mathematical Library, vi+608 pp. (1996), Cambridge University Press, Cambridge · Zbl 0951.30002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.