×

zbMATH — the first resource for mathematics

On the example of almost pseudo-Z-symmetric manifolds. (English) Zbl 1365.53021
Summary: In the present paper we have obtained a new example of non-Ricci-flat almost pseudo-Z-symmetric manifolds in the class of equidistant spaces, which admit non-trivial geodesic mappings.

MSC:
53B30 Local differential geometry of Lorentz metrics, indefinite metrics
53B20 Local Riemannian geometry
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
PDF BibTeX XML Cite
Full Text: Link
References:
[1] Brinkmann, H. W.: Einstein spaces which mapped conformally on each other. Math. Ann. 94 (1925). | · JFM 51.0568.03
[2] Cartan, É.: Les espaces riemanniens symétriques. Verhandlungen Kongress Zürich 1 (1932), 152-161. · Zbl 0006.42102
[3] Chepurna, O., Hinterleitner, I.: On the mobility degree of (pseudo-) Riemannian spaces with respect to concircular mappings. Miskolc Math. Notes 14, 2 (2013), 561-568. | · Zbl 1299.53036
[4] De, U. C., Pal, P.: On almost pseudo-Z-symmetric manifolds. Acta Univ. Palack. Olomuc., Fac. Rer. Nat., Math. 53, 1 (2014), 25-43. | · Zbl 1312.53065
[5] Dey, S. K., Baishya, K. K.: On the existence of some types of Kenmotsu manifolds. Univers. J. Math. Math. Sci. 6, 1 (2014), 13-32. · Zbl 1309.53030
[6] Hinterleitner, I., Mikeš, J.: Geodesic mappings onto Weyl manifolds. J. Appl. Math. 2, 1 (2009), 125-133, In: Proc. 8th Int. Conf. on Appl. Math. (APLIMAT 2009), Bratislava, 2009, 423-430.
[7] Kaigorodov, V. R.: Structure of space-time curvature. J. Sov. Math. 28 (1985), 256-273. | · Zbl 0559.53008
[8] Mikeš, J.: Geodesic mappings of semisymmetric Riemannian spaces. Archives at VINITI, Odessk. Univ. 3924-76, Moscow, 1976.
[9] Mikeš, J.: On geodesic mappings of 2-Ricci symmetric Riemannian spaces. Math. Notes 28 (1981), 622-624, Transl. from: Mat. Zametki 28 (1980), 313-317. | · Zbl 0454.53013
[10] Mikeš, J.: Projective-symmetric and projective-recurrent affinely connected spaces. Tr. Geom. Semin. 13 (1981), 61-62. · Zbl 0502.53016
[11] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci. (New York) 78, 3 (1996), 311-333, Transl. from: Itogi Nauki Tekh., Ser. Sovrem Mat. Prilozh., Temat. Obz. 11 (2002), 121-162. | · Zbl 0866.53028
[12] Mikeš, J.: Holomorphically projective mappings and their generalizations. J. Math. Sci. (New York) 89, 3 (1998), 1334-1353, Transl. from: Itogi Nauki Tekh., Ser. Sovrem Mat. Prilozh., Temat. Obz. 30 (2002), 258-289. | · Zbl 0983.53013
[13] Mikeš, J., Stepanova, E., Vanžurová, A.: Differential Geometry of Special Mappings. Palacký University, Olomouc, 2015. | · Zbl 1337.53001
[14] Mikeš, J., Tolobaev, O. S.: Symmetric and projectively symmetric spaces with affine connection. In: Investigations in topological and generalized spaces, Kirgiz. Gos. Univ., Frunze, 1988, 58-63, (in Russian).
[15] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic mappings and some generalizations. Palacký University, Olomouc, 2009. | · Zbl 1222.53002
[16] Shaikh, A. A., Baishya, K. K., Eyasmin, S.: On \(\phi \)-recurrent generalized \((k,\mu )\)-contact metric manifolds. Lobachevskii J. Math. 27, 3-13 (2007), electronic only. · Zbl 1143.53031
[17] Sinyukov, N. S.: Geodesic mappings of Riemannian spaces. Nauka, Moscow, 1979. | · Zbl 0637.53020
[18] Tamássy, L., Binh, T. Q.: On weakly symmetric and weakly projective symmetric Riemannian manifolds. In: Publ. Comp. Colloq. Math. Soc. János Bolyai 56, North-Holland Publ., Amsterdam, 1992, 663-670. | · Zbl 0791.53021
[19] Walker, A. G.: On Ruse’s spaces of recurrent curvature. Proc. London Math. Soc. 52, 2 (1950), 36-64. | | · Zbl 0039.17702
[20] Yano, K.: Concircular geometry. Proc. Imp. Acad. Tokyo 16 (1940), 195-200, 354-360, 442-448, 505-511. | · Zbl 0025.08504
[21] Yılmaz, H. B.: On decomposable almost pseudo conharmonically symmetric manifolds. Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Math. 51, 1 (2012), 111-124. | · Zbl 1273.53010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.