zbMATH — the first resource for mathematics

A general approach to Heisenberg categorification via wreath product algebras. (English) Zbl 1366.18006
Categorification of (quantum) Heisenberg algebras using graphical calculus has been an active area of research since the work of Khovanov in [M. Khovanov, Fund. Math. 225, No. 1, 169–210 (2014; Zbl 1304.18019)]. In the paper under review, the authors establish a general framework for categorifying Heisenberg algebras that can be specialized to obtain previous constructions in a more conceptual, and sometimes simpler, way.
Specifically, given an \(\mathbb{N}\)-graded Frobenius superalgebra \(B\) over an algebraically closed field \(\mathbb{F}\) of characteristic \(0\), the authors construct a quantum Heisenberg algebra \(\mathfrak{h}_B\) which can be viewed as either a lattice Heisenberg algebra associated to the Grothendieck group \(K_0(B)\) or the projective Heisenberg double associated to the tower of wreath product algebras \(A_n=B^{\otimes n}\rtimes\mathbb{F}[S_n]\), \(n\in\mathbb{N}\). They also construct a monoidal category \(\mathcal{H}_B\) which is the Karoubi envelope, also called the idempotent completion, of a category \(\mathcal{H}_B'\) generated as monoidal category by objects \(\{ n,\epsilon\} P\) and \(\{ n,\epsilon\} Q\) for \(n\in\mathbb{Z}\), \(\epsilon\in\mathbb{Z}/2\mathbb{Z}\) (thought of as grading-shifted versions of two objects \(P\) and \(Q\)). The morphisms in \(\mathcal{H}_B'\) are given by planar diagrams with strands labelled by elements of \(B\).
The main result of the paper is that if \(B\) does not equal its \(\mathbb{N}\)-degree \(0\) component, \(\mathcal{H}_B\) categorifies \(\mathfrak{h}_B\) in the sense that there is an algebra isomorphism \(p\) from \(\mathfrak{h}_B\) to the Grothendieck ring of \(\mathcal{H}_B\). To show the existence of \(p\), the authors derive a presentation of \(\mathfrak{h}_B\) and show that there are isomorphisms between suitable objects in \(\mathcal{H}_B\) corresponding to the relations in the presentation. The injectivity of \(p\) follows from an action of \(\mathcal{H}_B\) as functors on the category \(\bigoplus_{n\in\mathbb{N}} A_n\)-mod and the faithfulness of the Fock space representation of a Heisenberg double over \(\mathbb{Q}\). The assumption on the \(\mathbb{N}\)-grading of \(B\) is only needed for showing that \(p\) is surjective.
Additionally, the paper explores the rich structure of endomorphism rings in \(\mathcal{H}_B\). For instance, even in the simplest case \(B=\mathbb{F}\), the authors obtain Jucys-Murphy elements of symmetric group algebras and degenerate affine Hecke algebras. Using another specialization of \(B\), they prove a conjecture of Cautis and Lauda from [S. Cautis and A. Licata, Duke Math. J. 161, No. 13, 2469–2547 (2012; Zbl 1263.14020)].

18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
17B37 Quantum groups (quantized enveloping algebras) and related deformations
17B65 Infinite-dimensional Lie (super)algebras
19A22 Frobenius induction, Burnside and representation rings
Full Text: DOI arXiv
[1] Cautis, S., Licata, A.: Vertex operators and 2-representations of quantum affine algebras. arxiv:1112.6189v2 · Zbl 1011.17020
[2] Cautis, S; Licata, A, Heisenberg categorification and Hilbert schemes, Duke Math. J., 161, 2469-2547, (2012) · Zbl 1263.14020
[3] Cautis, S., Lauda, A., Licata, A., Sussan, J.: \(W\)-algebras from Heisenberg categories. arxiv:1501.00589v1 · Zbl 1342.17014
[4] Cautis, S; Licata, A; Sussan, J, Braid group actions via categorified Heisenberg complexes, Compos. Math., 150, 105-142, (2014) · Zbl 1342.17014
[5] Cautis, S; Sussan, J, On a categorical boson-fermion correspondence, Commun. Math. Phys., 336, 649-669, (2015) · Zbl 1327.17009
[6] Frenkel, IB; Jing, N; Wang, W, Vertex representations via finite groups and the mckay correspondence, Int. Math. Res. Not., 4, 195-222, (2000) · Zbl 1011.17020
[7] Frenkel, IB; Jing, N; Wang, W, Twisted vertex representations via spin groups and the mckay correspondence, Duke Math. J., 111, 51-96, (2002) · Zbl 1100.17502
[8] Geissinger, L.: Hopf algebras of symmetric functions and class functions. In: Combinatoire et représentation du groupe symétrique (Actes Table Ronde C.N.R.S., Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976). Lecture Notes in Mathematics, Vol. 579, pp. 168-181. Springer, Berlin (1977) · Zbl 1011.17020
[9] Huerfano, RS; Khovanov, M, A category for the adjoint representation, J. Algebra, 246, 514-542, (2001) · Zbl 1026.17015
[10] Hill, D., Sussan, J.: A categorification of twisted Heisenberg algebras. arxiv:1501.00283v1 · Zbl 1327.17009
[11] Józefiak, T, Characters of projective representations of symmetric groups, Expos. Math., 7, 193-247, (1989) · Zbl 0693.20009
[12] Jing, N; Wang, W, Twisted vertex representations and spin characters, Math. Z., 239, 715-746, (2002) · Zbl 1100.17503
[13] Khovanov, M, Categorifications from planar diagrammatics, Jpn. J. Math., 5, 153-181, (2010) · Zbl 1226.81094
[14] Khovanov, M, Heisenberg algebra and a graphical calculus, Fund. Math., 225, 169-210, (2014) · Zbl 1304.18019
[15] Kleshchev, A.: Linear and projective representations of symmetric groups, volume 163 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2005). doi:10.1017/CBO9780511542800 · Zbl 0999.17014
[16] Krug, A.: Symmetric quotient stacks and Heisenberg actions. arxiv:1501.07253v1 · Zbl 1279.20006
[17] Licata, A., Savage, A.: A survey of Heisenberg categorification via graphical calculus. Bull. Inst. Math. Acad. Sin. (N.S.), 7(2), 291-321 (2012). http://web.math.sinica.edu.tw/bulletin_ns/20122/2012203.pdf · Zbl 1281.20005
[18] Licata, A; Savage, A, Hecke algebras, finite general linear groups, and Heisenberg categorification, Quantum Topol., 4, 125-185, (2013) · Zbl 1279.20006
[19] Macdonald, IG, Polynomial functors and wreath products, J. Pure Appl. Algebra, 18, 173-204, (1980) · Zbl 0455.18002
[20] Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, second edition, With contributions by A. Oxford Science Publications, Zelevinsky (1995) · Zbl 1302.05204
[21] Pike, J; Savage, A, Twisted Frobenius extensions of graded superrings, Algebr. Represent. Theory, 19, 113-133, (2016) · Zbl 1394.16051
[22] Ram, A., Ramagge, J.: Affine Hecke algebras, cyclotomic Hecke algebras and Clifford theory. In A tribute to C. S. Seshadri (Chennai, 2002), Trends Math., pages 428-466. Birkhäuser, Basel (2003) · Zbl 1063.20004
[23] Rosso, D; Savage, A, Towers of graded superalgebras categorify the twisted Heisenberg double, J. Pure Appl. Algebra, 219, 5040-5067, (2015) · Zbl 1325.16029
[24] Rosso, D; Savage, A, Twisted Heisenberg doubles, Comm. Math. Phys., 337, 1053-1076, (2015) · Zbl 1329.16027
[25] Sergeev, A, The Howe duality and the projective representations of symmetric groups, Represent. Theory, 3, 416-434, (1999) · Zbl 0999.17014
[26] Savage, A; Yacobi, O, Categorification and Heisenberg doubles arising from towers of algebras, J. Combin. Theory Ser. A, 129, 19-56, (2015) · Zbl 1302.05204
[27] Webster, B.: Knot invariants and higher representation theory. arxiv:1309.3796v2
[28] Wan, J., Wang, W.: Lectures on spin representation theory of symmetric groups. Bull. Inst. Math. Acad. Sin. (N.S.), 7(1), 91-164 (2012). http://web.math.sinica.edu.tw/bulletin_ns/20121/2012104.pdf · Zbl 1280.20013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.