Eremenko, Alexandre; Gabrielov, Andrei On metrics of curvature 1 with four conic singularities on tori and on the sphere. (English) Zbl 1366.30029 Ill. J. Math. 59, No. 4, 925-947 (2015). The authors discuss conformal metrics of curvature \(1\) on tori and on the sphere, with four conic singularities whose angles are multiples of \(\pi\). Let \(\rho(z)|dz|\) be the length element of the metric in a local conformal coordinate. The behavior at a singularity is \(\rho(z) \sim c| z|^{\alpha-1}\) where \(\alpha>0\). The considered question is related to linear differential equations with regular singular points \(w''+\frac 12 R\), \( w=0\). Special cases of \(R\) are considered. Reviewer: Vladimir Mityushev (Kraków) Cited in 10 Documents MSC: 30F45 Conformal metrics (hyperbolic, Poincaré, distance functions) 34M03 Linear ordinary differential equations and systems in the complex domain 34M05 Entire and meromorphic solutions to ordinary differential equations in the complex domain 35J91 Semilinear elliptic equations with Laplacian, bi-Laplacian or poly-Laplacian 33E05 Elliptic functions and integrals Keywords:conformal metrics with conic singularities; complex linear differential equations × Cite Format Result Cite Review PDF Full Text: arXiv Euclid References: [1] \beginbbook \bauthor\binitsN. I. \bsnmAkhiezer, \bbtitleElements of the theory of elliptic functions, \bpublisherAMS, \blocationProvidence, RI, \byear1990. \endbbook \OrigBibText N. I. Akhiezer, Elements of the theory of elliptic functions, AMS, Providence, RI, 1990. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 0694.33001 [2] \beginbarticle \bauthor\binitsF. \bsnmBaldassari and \bauthor\binitsB. \bsnmDwork, \batitleOn second order differential equations with algebraic solutions, \bjtitleAmer. J. Math. \bvolume101 (\byear1979), page 42-\blpage76. \endbarticle \OrigBibText F. Baldassari and B. Dwork, On second order differential equations with algebraic solutions, Amer. J. Math., 101 (1979) 42-76. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 0425.34007 · doi:10.2307/2373938 [3] \beginbarticle \bauthor\binitsW. \bsnmBergweiler and \bauthor\binitsA. \bsnmEremenko, \batitleGreen’s function and anti-holomorphic dynamics on a torus, \bjtitleProc. Amer. Math. Soc. \bvolume144 (\byear2016), no. \bissue7, page 2911-\blpage2922. \endbarticle \OrigBibText W. Bergweiler and A. Eremenko, Green’s function and anti-holomorphic dynamics on a torus, Proc. AMS, 144, 7 (2016) 2911-2922. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 1337.31001 · doi:10.1090/proc/13044 [4] \beginbarticle \bauthor\binitsC.-L. \bsnmChai, \bauthor\binitsC.-S. \bsnmLin and \bauthor\binitsC.-L. \bsnmWang, \batitleMean field equations, hyperelliptic curves and modular forms: I, \bjtitleCambridge J. Math. \bvolume3 (\byear2015), page 127-\blpage274. \endbarticle \OrigBibText Ching-Li Chai, Chang-Shou Lin and Chin-Lung Wang, Mean field equations, hyperelliptic curves and modular forms: I, Cambridge journal of math., 3 (2015) 127-274. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 1327.35116 · doi:10.4310/CJM.2015.v3.n1.a3 [5] \beginbotherref \oauthor\binitsC.-L. \bsnmChai, \oauthor\binitsC.-S. \bsnmLin and \oauthor\binitsC.-L. \bsnmWang, Mean field equations, hyperelliptic curves and modular forms: II. Available at \arxivurlarXiv1502.03295. \endbotherref \OrigBibText Ching-Li Chai, Chang-Shou Lin and Chin-Lung Wang, Mean field equations, hyperelliptic curves and modular forms: II, arXiv1502.03295. \endOrigBibText \bptokstructpyb \endbibitem [6] \beginbarticle \bauthor\binitsG. \bsnmDarboux, \batitleSur une équation linéaire, \bjtitleC. R. Acad. Sci. Paris \bvolume94 (\byear1882), page 1645-\blpage1648. \endbarticle \OrigBibText G. Darboux, Sur une équation linéaire, C. R. Acad. Sci. Paris, t. 94 (1882) 1645-1648. \endOrigBibText \bptokstructpyb \endbibitem [7] \beginbarticle \bauthor\binitsA. \bsnmEremenko, \batitleMetrics of positive curvature with conic singularities on the sphere, \bjtitleProc. Amer. Math. Soc. \bvolume132 (\byear2004), page 3349-\blpage3355. \endbarticle \OrigBibText A. Eremenko, Metrics of positive curvature with conic singularities on the sphere, Proc. Amer. Math. Soc. 132 (2004), 3349-3355 \endOrigBibText \bptokstructpyb \endbibitem · Zbl 1053.53025 · doi:10.1090/S0002-9939-04-07439-8 [8] \beginbarticle \bauthor\binitsA. \bsnmEremenko and \bauthor\binitsA. \bsnmGabrielov, \batitleRational functions with real critical points and the B. and M. Shapiro conjecture in real enumerative geometry, \bjtitleAnn. Math. \bvolume155 (\byear2002), page 105-\blpage129. \endbarticle \OrigBibText A. Eremenko and A. Gabrielov, Rational functions with real critical points and the B. and M. Shapiro conjecture in real enumerative geometry, Ann. Math., 155 (2002) 105-129. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 0997.14015 · doi:10.2307/3062151 [9] \beginbarticle \bauthor\binitsA. \bsnmEremenko and \bauthor\binitsA. \bsnmGabrielov, \batitleSpherical rectangles, \bjtitleArnold Math. J. \bvolume2 (\byear2016), no. \bissue4, page 463-\blpage486. \endbarticle \OrigBibText A. Eremenko and A. Gabrielov, Spherical rectangles, accepted in Arnold J. Math., 2, N 4 (2016) 463-486. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 1365.30006 · doi:10.1007/s40598-016-0055-5 [10] \beginbarticle \bauthor\binitsA. \bsnmEremenko, \bauthor\binitsA. \bsnmGabrielov, \bauthor\binitsM. \bsnmShapiro and \bauthor\binitsA. \bsnmVainshtein, \batitleRational functions and real Schubert calculus, \bjtitleProc. Amer. Math. Soc. \bvolume134 (\byear2006), no. \bissue4, page 949-\blpage957. \endbarticle \OrigBibText A. Eremenko, A. Gabrielov, M. Shapiro and A. Vainshtein, Rational functions and real Schubert calculus, Proc. AMS, 134 (2006), no. 4, 949-957. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 1110.14052 · doi:10.1090/S0002-9939-05-08048-2 [11] \beginbarticle \bauthor\binitsA. \bsnmEremenko, \bauthor\binitsA. \bsnmGabrielov and \bauthor\binitsV. \bsnmTarasov, \batitleMetrics with conic singularities and spherical polygons, \bjtitleIllinois J. Math. \bvolume58 (\byear2014), no. \bissue3, page 739-\blpage755. \endbarticle \OrigBibText A. Eremenko, A. Gabrielov and V. Tarasov, Metrics with conic singularities and spherical polygons, Illinois J. Math., 58, 3 (2014) 739-755. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 1405.30005 [12] \beginbarticle \bauthor\binitsA. \bsnmEremenko, \bauthor\binitsA. \bsnmGabrielov and \bauthor\binitsV. \bsnmTarasov, \batitleMetrics with four conic singularities and spherical quadrilaterals, \bjtitleConform. Geom. Dyn. \bvolume20 (\byear2016), page 128-\blpage175. \endbarticle \OrigBibText A. Eremenko, A. Gabrielov and V. Tarasov, Metrics with four conic singularities and spherical quadrilaterals, Conformal geometry and Dynamics, 20 (2016) 128-175. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 1343.30007 · doi:10.1090/ecgd/295 [13] \beginbarticle \bauthor\binitsA. \bsnmEremenko, \bauthor\binitsA. \bsnmGabrielov and \bauthor\binitsV. \bsnmTarasov, \batitleSpherical quadrilaterals with three non-integer angles, \bjtitleMath. Phys. Anal. Geom. \bvolume12 (\byear2016), no. \bissue2, page 134-\blpage167. \endbarticle \OrigBibText A. Eremenko, A. Gabrielov and V. Tarasov, Spherical quadrilaterals with three non-integer angles, Journal of Math. Ph. Analysis and Geometry, 12 (2016) 2, 134-167. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 1364.30048 · doi:10.15407/mag12.02.134 [14] \beginbbook \bauthor\binitsS. \bsnmFinch, \bbtitleMathematical constants, \bpublisherCambridge UP, \blocationCambridge, \byear2003. \endbbook \OrigBibText S. Finch, Mathematical constants, Cambridge UP, Cambridge, 2003. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 1054.00001 [15] \beginbarticle \bauthor\binitsS. \bsnmFujimori, \bauthor\binitsY. \bsnmKawakami, \bauthor\binitsM. \bsnmKokubu, \bauthor\binitsW. \bsnmRossman, \bauthor\binitsM. \bsnmUmehara and \bauthor\binitsK. \bsnmYamada, \batitleCMC-1 trinoids in hyperbolic 3-space and metrics of constant curvature one with conical singularities on the 2-sphere, \bjtitleProc. Japan Acad. \bvolume87 (\byear2011), page 144-\blpage149. \endbarticle \OrigBibText S. Fujimori, Y. Kawakami, M. Kokubu, W. Rossman, M. Umehara and K. Yamada, CMC-1 trinoids in hyperbolic 3-space and metrics of constant curvature one with conical singularities on the 2-sphere, Proc. Japan Acad., 87 (2011), 144-149. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 1242.53070 · doi:10.3792/pjaa.87.144 [16] \beginbarticle \bauthor\binitsF. \bsnmGesztesy and \bauthor\bsnmWeikard, \batitleOn Picard potentials, \bjtitleDifferential Integral Equations \bvolume8 (\byear1995), no. \bissue6, page 1453-\blpage1476. \endbarticle \OrigBibText F. Gesztesy and Weikard, On Picard potentials, Differential Integral Equations 8 (1995), no. 6, 1453-1476. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 0846.35119 [17] \beginbbook \bauthor\binitsG.-H. \bsnmHalphen, des fonctions elliptiques et de leurs applications, première partie, \bpublisherGauthier-Villars, \blocationParis, \byear1886. \endbbook \OrigBibText G.-H. Halphen, Traité des fonctions elliptiques et de leurs applications, Première partie, Paris, Gauthier-Villars, 1886. \endOrigBibText \bptokstructpyb \endbibitem [18] \beginbchapter \bauthor\binitsC. \bsnmHermite, \bctitleSur l’équation de lamé, extrait de feuilles authographiées du course d’Analyse de l’École polytechnique, \(1^{\mathrm{re}}\) division, 1872-73, \(32^e\) leçon, \bbtitleOeuvres, t. III, \bpublisherGauthier-Villars, \blocationParis, \byear1912, pp. page 118-\blpage122. \endbchapter \OrigBibText Ch. Hermite, Sur l’équation de Lamé, Extrait de feuilles authographiées du Course d’Analyse de l’École Polytechnique, \(1^{\mathrm{re}}\) Division, 1872-73, \(32^e\) leçon. Oeuvres, t. III, p. 118-122. Paris, Gauthier-Villars, 1912. \endOrigBibText \bptokstructpyb \endbibitem [19] \beginbbook \bauthor\binitsF. \bsnmKlein, \bbtitleVorlesungen über die hypergeometrische funktion, reprint of the 1933 original, \bpublisherSpringer, \blocationBerlin-New York, \byear1981. \endbbook \OrigBibText F. Klein, Vorlesungen über die hypergeometrische Funktion, Reprint of the 1933 original. Springer-Verlag, Berlin-New York, 1981. \endOrigBibText \bptokstructpyb \endbibitem [20] \beginbbook \bauthor\binitsF. \bsnmKlein, \bbtitleVorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade, Verlag, \blocationBasel, \byear1993. \endbbook \OrigBibText F. Klein, Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade, Birkhäuser Verlag, Basel, 1993. \endOrigBibText \bptokstructpyb \endbibitem [21] \beginbarticle \bauthor\binitsC.-S. \bsnmLin and \bauthor\binitsC.-L. \bsnmWang, \batitleElliptic functions Green functions and the mean field equations on tori, \bjtitleAnn. Math. \bvolume172 (\byear2010), page 911-\blpage954. \endbarticle \OrigBibText Chang-Shou Lin and Chin-Lung Wang, Elliptic functions Green functions and the mean field equations on tori, Ann. Math., 172 (2010) 911-954. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 1207.35011 · doi:10.4007/annals.2010.172.911 [22] \beginbarticle \bauthor\binitsF. \bsnmLuo and \bauthor\binitsG. \bsnmTian, \batitleLiouville equation and spherical convex polytopes, \bjtitleProc. Amer. Math. Soc. \bvolume116 (\byear1992), no. \bissue4, page 1119-\blpage1129. \endbarticle \OrigBibText F. Luo and G. Tian, Liouville equation and spherical convex polytopes, Proc. Amer. Math. Soc. 116 (1992), no. 4, 1119.1129. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 0806.53012 · doi:10.2307/2159498 [23] \beginbarticle \bauthor\binitsG. \bsnmMondello and \bauthor\binitsD. \bsnmPanov, \batitleSpherical metrics with conical singularities on a 2-sphere: angle constraints, \bjtitleInt. Math. Res. Not. \bvolume16 (\byear2016), page 4937-\blpage4995. \endbarticle \OrigBibText G. Mondello and D. Panov, Spherical metrics with conical singularities on a 2-sphere: angle constraints, IMRN 16 (2016) 4937-4995, MR 3556430. \endOrigBibText \bptokstructpyb \endbibitem · doi:10.1093/imrn/rnv300 [24] \beginbarticle \bauthor\binitsI. \bsnmScherbak, \batitleRational functions with prescribed critical points, \bjtitleGeom. Funct. Anal. \bvolume12 (\byear2002), no. \bissue6, page 1365-\blpage1380. \endbarticle \OrigBibText I. Scherbak, Rational functions with prescribed critical points, Geom. Funct. Anal. 12 (2002), no. 6, 1365-1380. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 1092.14065 · doi:10.1007/s00039-002-1365-4 [25] \beginbchapter \bauthor\binitsL. \bsnmSchneps, \bctitleDessins d’enfants on the Riemann sphere, \bbtitleThe Grothendieck theory of dessins d’enfants (\bconflocationLuminy, \bconfdate1993), \bpublisherCambridge Univ. Press, \blocationCambridge, \byear1994, pp. page 47-\blpage77. \endbchapter \OrigBibText L. Schneps, Dessins d’enfants on the Riemann sphere, in: The Grothendieck theory of dessins d’enfants (Luminy, 1993), 47-77, Cambridge Univ. Press, Cambridge, 1994. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 0823.14017 · doi:10.1017/CBO9780511569302.004 [26] \beginbarticle \bauthor\binitsG. \bsnmTarantello, \batitleAnalytical, geometrical and topological aspects of a class of mean field equations on surfaces, \bjtitleDiscrete Contin. Dyn. Syst. \bvolume28 (\byear2010), no. \bissue3, page 931-\blpage973. \endbarticle \OrigBibText G. Tarantello, Analytical, geometrical and topological aspects of a class of mean field equations on surfaces, Discrete Contin. Dyn. Syst. 28 (2010), no. 3, 931-973. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 1207.35148 · doi:10.3934/dcds.2010.28.931 [27] \beginbarticle \bauthor\binitsM. \bsnmTroyanov, \batitlePrescribing curvature on compact surfaces with conical singularities, \bjtitleTrans. Amer. Math. Soc. \bvolume324 (\byear1991), page 793-\blpage821. \endbarticle \OrigBibText M. Troyanov, Prescribing curvature on compact surfaces with conical singularities, Trans. Amer. Math. Soc., 324 (1991) 793-821. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 0724.53023 · doi:10.2307/2001742 [28] \beginbarticle \bauthor\binitsE. \bparticleVan \bsnmVleck, \batitleA determination of the number of real and imaginary roots of the hypergeometric series, \bjtitleTrans. Amer. Math. Soc. \bvolume3 (\byear1902), page 110-\blpage131. \endbarticle \OrigBibText E. Van Vleck, A determination of the number of real and imaginary roots of the hypergeometric series, Trans. Amer. Math. Soc., 3 (1902) 110-131. \endOrigBibText \bptokstructpyb \endbibitem · JFM 33.0460.04 · doi:10.1090/S0002-9947-1902-1500590-4 [29] \beginbarticle \bauthor\binitsA. \bsnmVeselov, \batitleOn Darboux-Treibich-Verdier potentials, \bjtitleLett. Math. Phys. \bvolume96 (\byear2011), page 209-\blpage216. \endbarticle \OrigBibText A. Veselov, On Darboux-Treibich-Verdier potentials, Lett. Math. Phys. 96 (2011) 209-216. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 1242.34152 · doi:10.1007/s11005-010-0420-6 [30] \beginbarticle \bauthor\binitsR. \bsnmVidunas, \batitleDegenerate and dihedral Heun functions with parameters, \bjtitleHokkaido Math. J. \bvolume1 (\byear2016), page 93-\blpage108. \endbarticle \OrigBibText R. Vidunas, Degenerate and dihedral Heun functions with parameters, Hokkaido Math. J., 1 (2016) 93-108. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 1364.33022 · doi:10.14492/hokmj/1470080750 [31] \beginbarticle \bauthor\binitsR. \bsnmVidunas and \bauthor\binitsG. \bsnmFilipuk, \batitleParametric transformations between the Heun and Gauss hypergeometric functions, \bjtitleFunkcial. Ekvac. \bvolume56 (\byear2013), no. \bissue2, page 271-\blpage321. \endbarticle \OrigBibText R. Vidunas, G. Filipuk, Parametric transformations between the Heun and Gauss hypergeometric functions, Funkcial. Ekvac. 56 (2013), no. 2, 271-321. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 1279.33030 · doi:10.1619/fesi.56.271 [32] \beginbarticle \bauthor\binitsR. \bsnmVidunas and \bauthor\binitsG. \bsnmFilipuk, \batitleA classification of coverings yielding Heun-to-hypergeometric reductions, \bjtitleOsaka J. Math. \bvolume51 (\byear2014), no. \bissue4, page 867-\blpage903. \endbarticle \OrigBibText R. Vidunas, G. Filipuk, A classification of coverings yielding Heun-to-hypergeometric reductions, Osaka J. Math. 51 (2014), no. 4, 867-903. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 1309.33024 [33] \beginbbook \bauthor\binitsW. \bparticlevon \bsnmKoppenfels and \bauthor\binitsF. \bsnmStallmann, \bbtitlePraxis der konformen Abbildung, \bpublisherSpringer, \blocationBerlin, \byear1959. \endbbook \OrigBibText W. von Koppenfels, und F. Stallmann, Praxis der Konformen Abbildung, Springer, Berlin, 1959. \endOrigBibText \bptokstructpyb \endbibitem · Zbl 0086.28003 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.