×

Inclusion theorems of double deferred Cesàro means. II. (English) Zbl 1366.40004

Summary: In [Annals of Math. (2) 33, 413–421 (1932; JFM 58.1047.02)], R. P. Agnew presented a definition of the deferred Cesàro mean. Using this definition, Agnew [loc. cit.] presented inclusion theorems for the deferred and non-deferred Cesàro means. This paper is Part 2 of a series of papers that present extensions to the notion of double deferred Cesàro means. Similar to Part 1 this paper uses this definition and the notion of regularity for four dimensional matrices to present extensions and variations of the inclusion theorems presented by Agnew [loc. cit.].
For Part I see [the first two authors, under consideration].

MSC:

40B05 Multiple sequences and series
40C05 Matrix methods for summability

Citations:

JFM 58.1047.02
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] C. R. Adams, On Summability of Double Series, Trans. Amer. Math. Soc. 34, No.2 (1932), 215-230. · JFM 58.0231.01
[2] R. P. Agnew, On Deferred Cesàro Means, Annals of Math., 33 (1932), 413-421. · Zbl 0005.06203
[3] H. J. Hamilton, Transformations of Multiple Sequences, Duke Math. Jour., 2 (1936), 29-60. · JFM 62.0214.01
[4] H. J. Hamilton, A Generalization of Multiple Sequences Transformation, Duke Math. Jour., 4 (1938), 343-358. · JFM 64.0171.02
[5] H. J. Hamilton, Change of Dimension in Sequence Transformation, Duke Math. Jour., 4 (1938), 341 - 342. · JFM 64.0171.01
[6] H. J. Hamilton, Preservation of Partial Limits in Multiple Sequence Transformations, Duke Math. Jour., 5 (1939), 293-297. · JFM 65.0236.03
[7] G. H. Hardy, Divergent Series. Oxford Univ. Press, London. 1949. · Zbl 0032.05801
[8] K. Knopp, Zur Theorie der Limitierungsverfahren (Erste Mitteilung), Math. Zeit. 31 (1930), 115-127.
[9] I. J. Maddox, Some Analogues of Knopp’s Core Theorem, Internat. J. Math. & Math. Sci. 2(4) (1979) 604-614. 2 (1970), 63-65. · Zbl 0416.40004
[10] R. F. Patterson, Analogues of some Fundamental Theorems of Summability Theory, Internat. J. Math. & math. Sci. 23(1), (2000), 1-9. · Zbl 0954.40005
[11] R. F. Patterson & F. Nuray, Inclusion Theorems of Double Cesáro Means, (under consideration). · Zbl 1366.40004
[12] A. Pringsheim, Zur theorie der zweifach unendlichen zahlenfolgen, Mathematische Annalen, 53 (1900) 289-320. · JFM 31.0249.01
[13] G. M. Robison, Divergent Double Sequences and Series, Amer. Math. Soc. trans. 28 (1926) 50-73. · JFM 52.0223.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.