zbMATH — the first resource for mathematics

Fourier multipliers associated with singular partial differential operators. (English) Zbl 1366.43003
The authors establish a Bernstein type inequality for the generalized translation associated with the Riemann-Liouville operator. This inequality permits them to prove the Hörmander-Mikhlin multiplier theorem for the Fourier transform associated with the Riemann-Liouville operator.

43A32 Other transforms and operators of Fourier type
42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
Full Text: DOI
[1] L. E. ANDERSSON, On the determination of a function from spherical averages, SIAM. J. Math. Anal., 19: 214–234, 1988.
[2] G. E. ANDREWS, R. ASKEY,ANDR. ROY, Special functions, volume 71, Cambridge university press, 1999. · Zbl 0920.33001
[3] C. BACCAR, N. B. HAMADI, H. HERCH,ANDF. MEHERZI, Inversion of the Riemann-Liouville operator and its dual using wavelets, Opuscula Math., 35 (6): 867–887, 2015. · Zbl 1341.42051
[4] C. BACCAR, N. B. HAMADI,ANDL. T. RACHDI, Inversion formulas for the Riemann-Liouville transform and its dual associated with singular partial differential operators, Int. J. Math. Math. Sci., 2006: 1–26, 2006. · Zbl 1131.44002
[5] C. BACCAR, N. B. HAMADI,ANDL. T. RACHDI, Best approximation for Weierstrass transform connected with Riemann-Liouville operator, Commun. Math. Anal., 5 (1), 2008.
[6] C. BACCAR ANDL. RACHDI, Spaces of DLp-type and a convolution product associated with the Riemann-Liouville operator, Bull. Math. Anal. Appl., 1 (3): 16–41, 2009.
[7] W. R. BLOOM ANDZ. XU, Fourier multipliers for Lpon Ch’ebli–Trim‘eche hypergroups, Proc. London Math. Soc., 80 (03): 643–664, 2000. · Zbl 1022.43005
[8] R. COIFMAN ANDG. WEISS, Analyse harmonique non-commutative sur certains espaces homog‘enes, Lecture Notes in Math., 242: 569–645, 1977.
[9] J. A. FAWCETT, Inversion of N -dimensional spherical averages, SIAM J. Appl. Math., 45 (2): 336– 341, 1985. · Zbl 0588.44006
[10] V. FISCHER ANDM. RUZHANSKY, Quantization on nilpotent Lie groups, Progress in Mathematics, volume 314, Birkhauser, 2016.
[11] J. GOSSELIN ANDK. STEMPAK, A weak-type estimate for Fourier-Bessel multipliers, Proc. Amer. Math. Sec., 106 (3): 655–662, 1989. · Zbl 0684.42007
[12] L. GRAFAKOS, Classical Fourier Analysis, volume 2, Springer, 2008.
[13] N. B. HAMADI, Generalized homogeneous Besov spaces associated with the Riemann–Liouville op- erator, Internat. J. Math., 26 (02): 21, 2015.
[14] N. B. HAMADI ANDL. RACHDI, Fock spaces and associated operators for singular partial differen- tial operators, Int. J. Math. Anal., 1 (18): 873–895, 2007.
[15] N. B. HAMADI ANDL. T. RACHDI, Weyl transforms associated with the Riemann-Liouville operator, Int. J. Math. Math. Sci., 2006, 2006. · Zbl 1146.35426
[16] H. HELLSTEN ANDL.-E. ANDERSSON, An inverse method for the processing of synthetic aperture radar data, Inverse problems, 3 (1): 111, 1987.
[17] M. HERBERTHSON, A numerical implementation of an inverse formula for carabas raw data, National Defense Research Institute, Internal Report D, pages 303–304, 1986.
[18] L. H ”ORMANDER, Estimates for translation invariant operators in Lpspaces, Acta Math., 104 (1): 93–140, 1960.
[19] R. KAPELKO, A multiplier theorem for the Hankel transform, Rev. Mat. Complut., 11 (2): 281–288, 1998. · Zbl 0924.42010
[20] N. N. LEBEDEV, Special functions and their applications, Courier Corporation, 1972.
[21] S. G. MIKHLIN, The multipliers of Fourier integrals, Dokl. Akad. Naulc SSSR (N. S.), 109 (4): 701– 703, 1956.
[22] S. OMRI ANDL. RACHDI, Heisenberg-Pauli-Weyl uncertainty principle for the Riemann-Liouville operator, J. Inequal. Pure Appl. Math, 9 (3): 1–23, 2008.
[23] M. RUZHANSKY, M. VLADIMIROVICH ANDJ. WIRTH, On multipliers on compact Lie groups, Funct. Anal. Appl, 47 (1): 72–75, 2013. · Zbl 1276.43001
[24] M. RUZHANSKY ANDJ. WIRTH, Lp Fourier multipliers on compact Lie groups, Math. Z, 280: 621– 642, 2015.
[25] E. M. STEIN, Singular integrals and differentiability properties of functions, volume 2, Princeton university press, 1970.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.