Esscher-transformed Laplace distribution revisited. (English) Zbl 1366.60043

Summary: We show that the family of Esscher-transformed Laplace distributions is a subclass of asymmetric Laplace laws.


60E05 Probability distributions: general theory
60E10 Characteristic functions; other transforms
Full Text: DOI Euclid


[1] Esscher, F. (1932). On the probability function in the collective theory of risk. Scandinavian Actuarial Journal 15 , 175-195. · Zbl 0004.36101
[2] Gerber, H. U. and Shiu, E. S. W. (1994). Option pricing by Esscher transforms. Transactions of Society of Actuaries 46 , 99-191.
[3] George, D. and George, S. (2011). Application of Esscher transformed Laplace distribution in Web server data. Journal of Digital Information Management 9 , 19-26.
[4] George, S. and George, D. (2012). Esscher transformed Laplace distributions and its applications. Journal of Probability and Statistical Sciences 10 , 135-152.
[5] George, D. and George, S. (2013). Marshall-Olkin Esscher transformed Laplace distribution and processes. Brazilian Journal of Probability and Statistics 27 , 162-184. · Zbl 1483.60028
[6] Jayakumar, K. and Kuttykrishnan, A. P. (2007). A time-series model using asymmetric Laplace distribution. Statistics & Probability Letters 77 , 1636-1640. · Zbl 1127.62079 · doi:10.1016/j.spl.2005.10.028
[7] Jayakumar, K., Kuttykrishnan, A. P. and Kozubowski, T. J. (2012). A first order autoregressive asymmetric Laplace process. Journal of Probability and Statistical Science 10 , 1-14.
[8] Kotz, S., Kozubowski, T. J. and Podgórski, K. (2001). The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering, and Finance . Boston: Birkhaüser. · Zbl 0977.62003
[9] Kozubowski, T. J. and Podgórski, K. (2010). Random self-decomposability and autoregressive processes. Statistics & Probability Letters 80 , 1606-1611. · Zbl 1213.60035 · doi:10.1016/j.spl.2010.06.014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.