The Cramér condition for the Curie-Weiss model of SOC. (English) Zbl 1366.60108

Summary: We pursue the study of the Curie-Weiss model of self-organized criticality we designed in [R. Cerf and the author, Ann. Probab. 44, No. 1, 444–478 (2016; Zbl 1342.60161)]. We extend our results to more general interaction functions and we prove that, for a class of symmetric distributions satisfying a Cramér condition (C) and some integrability hypothesis, the sum \(S_{n}\) of the random variables behaves as in the typical critical generalized Ising Curie-Weiss model. The fluctuations are of order \(n^{3/4}\) and the limiting law is \(k\exp(-\lambda x^{4})dx\) where \(k\) and \(\lambda\) are suitable positive constants. In [loc. cit.], we obtained these results only for distributions having an even density.


60K35 Interacting random processes; statistical mechanics type models; percolation theory
60F05 Central limit and other weak theorems
82B27 Critical phenomena in equilibrium statistical mechanics


Zbl 1342.60161
Full Text: DOI arXiv Euclid


[1] Andriani, C. and Baldi, P. (1997). Sharp estimates of deviations of the sample mean in many dimensions. Annales de L’I.H.P. Probabilités Et Statistiques 33 , 371-385. · Zbl 0882.60022 · doi:10.1016/S0246-0203(97)80097-0
[2] Bahadur, R. R. and Ranga Rao, R. (1960). On deviations of the sample mean. The Annals of Mathematical Statistics 31 , 1015-1027. · Zbl 0101.12603 · doi:10.1214/aoms/1177705674
[3] Bak, P., Tang, C. and Wiesenfeld, K. (1987). Self-organized criticality: An explanation of \(1/f\) noise. Physical Review Letters 59 , 381-384.
[4] Borovkov, A. A. and Mogulskii, A. A. (1992). Large deviations and testing statistical hypotheses. I. Large deviations of sums of random vectors. Siberian Advances in Mathematics 2 , 52-120.
[5] Cerf, R. and Gorny, M. (2016). A Curie-Weiss model of Self-Organized Criticality. The Annals of Probability 44 , 444-478. · Zbl 1342.60161 · doi:10.1214/14-AOP978
[6] Dembo, A. and Zeitouni, O. (2010). Large Deviations Techniques and Applications. Stochastic Modelling and Applied Probability 38 . Berlin: Springer. · Zbl 1177.60035 · doi:10.1007/978-3-642-03311-7
[7] Eisele, T. and Ellis, R. S. (1988). Multiple phase transitions in the generalized Curie-Weiss model. Journal of Statistical Physics 52 , 161-202. · Zbl 1083.82513 · doi:10.1007/BF01016409
[8] Ellis, R. S. and Newman, C. M. (1978). Limit theorems for sums of dependent random variables occurring in statistical mechanics. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 44 , 117-139. · Zbl 0364.60120 · doi:10.1007/BF00533049
[9] Gorny, M. (2014). A Curie-Weiss model of self-organized criticality: The Gaussian case. Markov Processes and Related Fields 20 , 563-576. · Zbl 1326.60138
[10] Martin-Löf, A. (1982). A Laplace approximation for sums of independent random variables. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 59 , 101-115. · Zbl 0473.60036 · doi:10.1007/BF00575528
[11] Rudin, W. (1987). Real and Complex Analysis , 3rd ed. New York: McGraw-Hill Book Co. · Zbl 0925.00005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.