Hicdurmaz, Betul; Can, Emine On the numerical solution of a fractional population growth model. (English) Zbl 1367.92100 Tbil. Math. J. 10, No. 1, 269-278 (2017). Summary: In this paper, a fractional model for population growth of species within a closed system is considered. A numerical method which is based on the implementation of the fractional Legendre functions with a pseudospectral approach is applied. The aim is to show the effectiveness of fractional Legendre functions for the numerical simulation of fractional models. Cited in 4 Documents MSC: 92D25 Population dynamics (general) 65R20 Numerical methods for integral equations Keywords:fractional differential equation; population model; numerical solution; pseudospectral method × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Scudo F. M., Vito Volterra and theoretical ecology, Theor. Popul. Biol. 2 (1), 1-23, 1971.; · Zbl 0241.92001 [2] Small R. D., Population growth in a closed system, in mathematical modelling: Classroom notes in applied mathematics, SIAM, Philadelphia, 1989.; [3] Tebeest K. G., Numerical and Analytical solutions of Volterra’s population model, SIAM Rev. 39 (3), 484-493, 1997.; · Zbl 0892.92020 [4] Khan, N. A., Mahmood, A., Khan, N. A., Ara, A., Analytical study of nonlinear fractional-order integrodifferential equation: revisit Volterra’s population model, Int. J. Differ. Equ., 845945, 1-8, 2012.; · Zbl 1267.34138 [5] Maleki, M., Kajani, M. T., Numerical approximations for Volterra’s population growth model with fractional order via a multi-domain pseudospectral method, Appl. Math. Model., 39, 4300-4308, 2015.; · Zbl 1443.65442 [6] Xu, H., Analytical approximations for a population growth model with fractional order, Commun. Nonlinear Sci. Numer. Simulat., 14, 1978-1983, 2009.; · Zbl 1221.65210 [7] Momani, S., Qaralleh, R., Numerical approximations and Pade approximants for a fractional population growth model, Appl. Math. Model., 31, 1907-1914, 2007.; · Zbl 1167.45300 [8] Dehghan, M., Shahini, M., Rational pseudospectral approximation to the solution of a nonlinear integro-differential equation arising in modeling of the population growth, Appl. Math. Model., 39, 5521-5530, 2015.; · Zbl 1443.92005 [9] Jiang, W., Tian, T., Numerical solution of nonlinear Volterra integro-differential equations of fractional order by the reproducing kernel method, Appl. Math. Model., 39, 4871-4876, 2015.; · Zbl 1443.65113 [10] Parand, K., Razzaghi, M., Rational Chebyshev tau method for solving Volterra’s population model, Appl. Math. Comput., 149, 893-900, 2004.; · Zbl 1038.65149 [11] Saadatmandi, A., Dehghan, M., A legendre collocation method for fractional integro-differential equations, J. Vib. Control, 17 (13), 2050-2058, 2011.; · Zbl 1271.65157 [12] Rida, S. Z., Yousef, A. M., On the fractional order Rodrigues formula for the Legendre polynomials, Adv. Appl. Math. Sci. 10, 509-518, 2011.; · Zbl 1239.26008 [13] Kazem, S., Abbasbandy, S., Kumar, S., Fractional-order Legendre functions for solving fractional-order differential equations, Appl. Math. Model., 37, 5498-5510, 2013.; · Zbl 1449.33012 [14] Guo, B. Y., Spectral methods and their applications, World Scientific, River Edge, New Jersey,1998.; · Zbl 0906.65110 [15] Abbasbandy, S., Kazem, S., Alhuthali, M. S., Alsulami, H. H., Application of the operational matrix of fractional order Legendre functions for solving the time-fractional convection diffusion equation, Appl. Math. Comput. 266, 3140, 2015.; · Zbl 1410.65388 [16] Bhrawy, A. H., Al-Shomrani, M. M., A shifted Legendre spectral method for fractional-order multi-point boundary value problems, Adv Differ Equ-NY, 8, 1-19, 2012.; · Zbl 1280.65074 [17] Wazwaz A. M., Analytical approximations and Pade approximants for Volterra’s population model, Appl. Math. Comput., 100, 13-25, 1999.; · Zbl 0953.92026 [18] Ramezani M., Razzaghi M., Deghgan M., Composite spectral functions for solving Volterra’s population model, Cahos Solitons Fract., 34, 588-593, 2007.; · Zbl 1127.92033 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.