Badger, Matthew; Engelstein, Max; Toro, Tatiana Structure of sets which are well approximated by zero sets of harmonic polynomials. (English) Zbl 1369.33017 Anal. PDE 10, No. 6, 1455-1495 (2017). Summary: The zero sets of harmonic polynomials play a crucial role in the study of the free boundary regularity problem for harmonic measure. In order to understand the fine structure of these free boundaries, a detailed study of the singular points of these zero sets is required. In this paper we study how “degree-\(k\) points” sit inside zero sets of harmonic polynomials in \(\mathbb{R}^n\) of degree \(d\) (for all \(n\geq 2\) and \(1\leq k\leq d\)) and inside sets that admit arbitrarily good local approximations by zero sets of harmonic polynomials. We obtain a general structure theorem for the latter type of sets, including sharp Hausdorff and Minkowski dimension estimates on the singular set of degree-\(k\) points (\(k\geq 2\)) without proving uniqueness of blowups or aid of PDE methods such as monotonicity formulas. In addition, we show that in the presence of a certain topological separation condition, the sharp dimension estimates improve and depend on the parity of \(k\). An application is given to the two-phase free boundary regularity problem for harmonic measure below the continuous threshold introduced by Kenig and Toro. Cited in 7 Documents MSC: 33C55 Spherical harmonics 28A75 Length, area, volume, other geometric measure theory 31A15 Potentials and capacity, harmonic measure, extremal length and related notions in two dimensions Keywords:Reifenberg-type sets; harmonic polynomials; Łojasiewicz-type inequalities; singular set; Hausdorff dimension; Minkowski dimension; two-phase free boundary problems; harmonic measure; NTA domains PDF BibTeX XML Cite \textit{M. Badger} et al., Anal. PDE 10, No. 6, 1455--1495 (2017; Zbl 1369.33017) Full Text: DOI arXiv OpenURL References: [1] ; Almgren, Minimal submanifolds and geodesics : proceedings of the Japan-United States Seminar, 1 (1979) [2] 10.1007/978-1-4757-8137-3 [3] 10.4171/JEMS/685 · Zbl 1366.28004 [4] 10.1002/cpa.21687 · Zbl 1376.28002 [5] 10.4171/RMI/654 · Zbl 1242.28003 [6] 10.1007/s00209-010-0795-1 · Zbl 1251.28003 [7] 10.1112/jlms/jds041 · Zbl 1269.31001 [8] 10.1017/fms.2015.26 · Zbl 1348.49042 [9] 10.1007/978-94-015-8149-3 [10] 10.1007/978-1-4612-2898-1_7 [11] 10.1090/proc/13035 · Zbl 1361.42012 [12] 10.1090/ulect/035 [13] 10.1002/cpa.21518 · Zbl 1309.35012 [14] 10.1007/s002080050332 · Zbl 0944.53004 [15] 10.1090/S0065-9266-2011-00629-5 · Zbl 1236.28002 [16] 10.1002/1097-0312(200104)54:4<385::AID-CPA1>3.0.CO;2-M · Zbl 1031.28004 [17] 10.24033/asens.2297 · Zbl 1366.35245 [18] 10.1017/CBO9780511546617 [19] 10.4310/PAMQ.2007.v3.n3.a2 · Zbl 1141.31002 [20] 10.1016/0001-8708(82)90055-X · Zbl 0514.31003 [21] 10.1007/BF01233418 · Zbl 0731.30018 [22] 10.2307/121086 · Zbl 0946.31001 [23] 10.1515/CRELLE.2006.050 · Zbl 1106.35147 [24] 10.1090/S0894-0347-08-00601-2 · Zbl 1206.28002 [25] 10.1023/A:1004806609074 · Zbl 0973.26012 [26] 10.2140/pjm.2005.218.139 · Zbl 1108.31006 [27] 10.1080/03605307708820059 · Zbl 0377.31008 [28] 10.1016/j.aim.2015.01.009 · Zbl 1369.31008 [29] ; Łojasiewicz, Studia Math., 18, 87 (1959) [30] 10.1017/CBO9780511623813 [31] 10.1112/jlms/s2-42.2.249 · Zbl 0671.30018 [32] 10.1017/CBO9780511750489 · Zbl 1243.60002 [33] 10.2996/kmj/1341401053 · Zbl 1252.32036 [34] 10.2307/1971410 · Zbl 0627.28008 [35] 10.1007/BF02547186 · Zbl 0099.08503 [36] 10.1007/978-3-642-02431-3 · Zbl 0888.49001 [37] 10.7146/math.scand.a-11763 · Zbl 0402.31007 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.