×

zbMATH — the first resource for mathematics

Arithmetic theory of \(E\)-operators. (Théorie arithmétique des \(E\)-opérateurs.) (English. French summary) Zbl 1370.11090
In a previous paper [Comment. Math. Helv. 89, No. 2, 313–341 (2014; Zbl 1304.11070)], the authors introduced and studied the subring \({\mathbb{G}}\) of \({\mathbb{C}}\) which is the set of values at algebraic points of analytic continuations of \(G\)-functions. They suggested that \({\mathbb{G}}\) may be \({\mathcal{P}}[1/\pi]\), where \({\mathcal{P}}\) is the ring of periods as defined by M. Kontsevich and D. Zagier [in: Mathematics unlimited – 2001 and beyond. Berlin: Springer. 771–808 (2001; Zbl 1039.11002)].
Here, they introduce and study the subring \({\mathbb{E}}\) of \({\mathbb{C}}\) which is the set of values taken at any algebraic point by any \(E\)-function. They suggest that \({\mathbb{E}}\) may be contained in the ring generated by \(1/\pi\) and exponential periods.
An \(E\)-function is a solution of a differential \(E\)-operator \(L\), with a regular singularity at \(0\) and an irregular singularity at \(\infty\). At a regular point \(\alpha\in{\overline{\mathbb{Q}}}\setminus\{0\}\), there is a basis of holomorphic solutions in \({\overline{\mathbb{Q}}}[[z-\alpha]]\); around \(z=\alpha\), a solution \(F\) of \(L\) at \(z=0\) is a linear combination of the elements of this basis, the coefficients of which are called the connection constants. From a result of Y. André [Ann. Math. (2) 151, No. 2, 705–740 (2000; Zbl 1037.11049)], it follows that \(F\) is a linear combination of \(E\)-functions, powers of \(z\) and powers of \(\log z\). Assuming that the coefficients of this linear combination are algebraic, the authors prove that the connection constants belong to \({\mathbb{E}}[\log\alpha]\). When \(F\) is an \(E\)-function, they belong to \({\mathbb{E}}\).
The authors also study the local solutions at infinity, which involve divergent series. The asymptotic expansions are valid in large sectors \(\arg(z)\in [\theta-(\pi/2)-\varepsilon,\theta+(\pi/2)+\varepsilon]\) and involve functions \(e^{\varrho z}\), \(z^{-n-\alpha}\) and powers of \(\log (1/z)\). For an \(E\)-operator, André [loc. cit.] has constructed a basis of formal solutions at infinity involving divergent Gevrey series of order \(1\). Given an \(E\)-function \(F\) and a direction \(\theta\) which is not an anti Stoke constant, the coefficients of \(F\) in this basis are called the Stoke constants. The authors prove that they belong to the ring \({\mathbb{S}}\) that they define as the \({\mathbb{G}}\)-submodule of \({\mathbb{C}}\) generated by all values of the derivatives of the Gamma function \(\Gamma(z)\) at algebraic points. They show that \({\mathbb{S}}\) is also the \({\mathbb{G}}[\gamma]\)-module generated by all values of the derivatives of the Gamma function \(\Gamma(z)\) at algebraic points, where \(\gamma\) is Euler’s constant.
In their previous paper on \(G\)-functions [loc. cit.], the authors introduced the definition of \(G\)-approximation. Here, they introduce a similar notion which is \(E\)-approximation, and they study the set of numbers that have \(E\)-approximations.

MSC:
11J91 Transcendence theory of other special functions
33E30 Other functions coming from differential, difference and integral equations
34M40 Stokes phenomena and connection problems (linear and nonlinear) for ordinary differential equations in the complex domain
44A10 Laplace transform
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] André, Y., Séries Gevrey de type arithmétique. I. Théorèmes de pureté et de dualité, Ann. of Math. (2), 151, 2, 705-740 (2000) · Zbl 1037.11049
[2] André, Y., Une introduction aux motifs (motifs purs, motifs mixtes, périodes), 17 (2004) · Zbl 1060.14001
[3] Andrews, G. E.; Askey, R.; Roy, R., Special functions, 71 (1999) · Zbl 0920.33001
[4] Aptekarev, A. I., Rational approximants for Euler constant and recurrence relations, 9 (2007)
[5] Beukers, F., Algebraic values of \(G\)-functions, J. reine angew. Math., 434, 45-65 (1993) · Zbl 0753.11024
[6] Beukers, F., A refined version of the Siegel-Shidlovskii theorem, Ann. of Math. (2), 163, 1, 369-379 (2006) · Zbl 1133.11044
[7] Cohn, H., A short proof of the simple continued fraction expansion of \(e\), Amer. Math. Monthly, 113, 1, 57-62 (2006) · Zbl 1145.11012
[8] Comtet, L., Analyse combinatoire. Tome I (1970) · Zbl 0221.05002
[9] Ditkine, V.; Proudnikov, A., Calcul opérationnel (1979) · Zbl 0494.44001
[10] Duval, A.; Mitschi, C., Matrices de Stokes et groupe de Galois des équations hypergéométriques confluentes généralisées, Pacific J. Math., 138, 1, 25-56 (1989) · Zbl 0705.34068
[11] Fischler, S.; Rivoal, T., On the values of \(G\)-functions, Comment. Math. Helv., 89, 2, 313-341 (2014) · Zbl 1304.11070
[12] Fischler, S.; Rivoal, T., Microsolutions of differential operators and values of arithmetic Gevrey series (2015) · Zbl 1431.11093
[13] Flajolet, Ph.; Sedgewick, R., Analytic combinatorics (2009) · Zbl 1165.05001
[14] Hessami Pilehrood, Kh.; Hessami Pilehrood, T., Rational approximations to values of Bell polynomials at points involving Euler’s constant and zeta values, J. Austral. Math. Soc., 92, 1, 71-98 (2012) · Zbl 1251.11050
[15] Hessami Pilehrood, Kh.; Hessami Pilehrood, T., On a continued fraction expansion for Euler’s constant, J. Number Theory, 133, 2, 769-786 (2013) · Zbl 1275.11103
[16] Kontsevich, M.; Zagier, D., Mathematics unlimited—2001 and beyond, 771-808 (2001) · Zbl 1039.11002
[17] Lagarias, J. C., Euler’s constant: Euler’s work and modern developments, Bull. Amer. Math. Soc. (N.S.), 50, 4, 527-628 (2013) · Zbl 1282.11002
[18] Loday-Richaud, M., Séries divergentes et procédés de resommation (Journées X-UPS 1991), 69-100 (1991)
[19] Ramis, J.-P., Séries divergentes et théories asymptotiques, 0 (1994)
[20] Rivoal, T., Rational approximations for values of derivatives of the gamma function, Trans. Amer. Math. Soc., 361, 11, 6115-6149 (2009) · Zbl 1236.11061
[21] Rivoal, T., Approximations rationnelles des valeurs de la fonction gamma aux rationnels, J. Number Theory, 130, 4, 944-955 (2010) · Zbl 1206.11095
[22] Rivoal, T., On the arithmetic nature of the values of the gamma function, Euler’s constant, and Gompertz’s constant, Michigan Math. J., 61, 2, 239-254 (2012) · Zbl 1288.11073
[23] Shidlovskii, A. B., Transcendental numbers, 12 (1989) · Zbl 0689.10043
[24] Waldschmidt, M., Proceedings of the Tunisian Mathematical Society, 11, 89-116 (2007)
[25] Whittaker, E. T.; Watson, G. N., A course of modern analysis (1927) · JFM 53.0180.04
[26] Wright, E. M., On the coefficients of power series having exponential singularities, J. London Math. Soc., 8, 71-80 (1933) · Zbl 0006.19704
[27] Wright, E. M., On the coefficients of power series having exponential singularities. II, J. London Math. Soc., 24, 304-309 (1949) · Zbl 0034.34202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.