zbMATH — the first resource for mathematics

Lipschitz regularity and approximate differentiability of the DiPerna-Lions flow. (English) Zbl 1370.26014

26A24 Differentiation (real functions of one variable): general theory, generalized derivatives, mean value theorems
34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations
Full Text: EuDML
[1] L. AMBROSIO - N. FUSCO - D. PALLARA, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs, 2000. Zbl0957.49001 MR1857292 · Zbl 0957.49001
[2] L. AMBROSIO, Transport equation and Cauchy problem for BV vector fields. Inventiones Mathematicae, 158 (2004), pp. 227-260. Zbl1075.35087 MR2096794 · Zbl 1075.35087
[3] L. AMBROSIO, Lecture notes on transport equation and Cauchy problem for BV vector fields and applications. Preprint, 2004 (available at http:// cvgmt.sns.it). · Zbl 1075.35087
[4] L. AMBROSIO - J. MALÝ, Very weak notions of differentiability. Preprint, 2005 (available at http://cvgmt.sns.it). MR2332676 · Zbl 1167.26001
[5] I. CAPUZZO DOLCETTA - B. PERTHAME, On some analogy between different approaches to first order PDE’s with nonsmooth coefficients. Adv. Math. Sci Appl., 6 (1996), pp. 689-703. Zbl0865.35032 MR1411988 · Zbl 0865.35032
[6] F. COLOMBINI- N. LERNER, Uniqueness of continuous solutions for BV vector fields. Duke Math. J., 111 (2002), pp. 357-384. Zbl1017.35029 MR1882138 · Zbl 1017.35029
[7] C. LE BRIS - P. L. LIONS, Renormalized solutions of some transport equations with partially W1;1 velocities and applications. Annali di Matematica, 183 (2003), pp. 97-130. Zbl1170.35364 MR2044334 · Zbl 1170.35364
[8] R. J. DI PERNA - P. L. LIONS: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math., 98 (1989), pp. 511-547. Zbl0696.34049 MR1022305 · Zbl 0696.34049
[9] H. FEDERER, Geometric Measure Theory. Springer, 1969. Zbl0176.00801 MR257325 · Zbl 0176.00801
[10] N. LERNER: Transport equations with partially BV velocities. Preprint, 2004. Zbl1170.35362 MR2124585 · Zbl 1170.35362
[11] P. L. LIONS, Sur les équations différentielles ordinaires et les équations de transport. C. R. Acad. Sci. Paris Sér. I, 326 (1998), pp. 833-838. Zbl0919.34028 MR1648524 · Zbl 0919.34028
[12] E. M. STEIN: Singular integrals and differentiability properties of functions. Princeton University Press, 1970. Zbl0207.13501 MR290095 · Zbl 0207.13501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.