Nyström, Kaj The A-property of the Kolmogorov measure. (English) Zbl 1370.35188 Anal. PDE 10, No. 7, 1709-1756 (2017). Summary: We consider the Kolmogorov-Fokker-Planck operator \[ \mathcal{K}:=\sum_{i=1}^{m} \partial_{x_i x_i}+ \sum_{i=1}^m x_i \partial_{y_{i}}-\partial_t \] in unbounded domains of the form \[ \Omega=\{(x,x_{m},y,y_{m},t)\in \mathbb{R}^{N+1}|x_m>\psi(x,y,t)\}\text{.} \] Concerning \(\psi\) and \(\Omega\), we assume that \(\Omega\) is what we call an (unbounded) admissible \(\operatorname{Lip}_K\)-domain: \(\psi\) satisfies a uniform Lipschitz condition, adapted to the dilation structure and the (non-Euclidean) Lie group underlying the operator \(\mathcal{K}\), as well as an additional regularity condition formulated in terms of a Carleson measure. We prove that in admissible \(\operatorname{Lip}_K\)-domains the associated parabolic measure is absolutely continuous with respect to a surface measure and that the associated Radon-Nikodym derivative defines an \(A_\infty\) weight with respect to this surface measure. Our result is sharp. Cited in 3 Documents MSC: 35K65 Degenerate parabolic equations 35K70 Ultraparabolic equations, pseudoparabolic equations, etc. 35H20 Subelliptic equations 35R03 PDEs on Heisenberg groups, Lie groups, Carnot groups, etc. Keywords:Kolmogorov equation; ultraparabolic; hypoelliptic; Lipschitz domain; doubling measure; parabolic measure; Kolmogorov measure; \(A_\infty\) PDF BibTeX XML Cite \textit{K. Nyström}, Anal. PDE 10, No. 7, 1709--1756 (2017; Zbl 1370.35188) Full Text: DOI Link OpenURL References: [1] 10.1142/S0218202501000945 · Zbl 1034.35166 [2] 10.1007/s00477-008-0276-9 · Zbl 1416.65027 [3] 10.1051/m2an/2010046 · Zbl 1426.76628 [4] 10.1007/s00440-010-0301-z · Zbl 1234.60060 [5] 10.1007/978-3-642-12110-4_123 · Zbl 1308.76218 [6] ; Christ, Colloq. Math., 60/61, 601 (1990) [7] 10.1007/s11118-010-9172-2 · Zbl 1207.35102 [8] 10.1007/s10231-010-0172-z · Zbl 1241.35127 [9] 103_005 [10] 10.1007/s10851-005-3630-2 · Zbl 1478.92100 [11] 10.1007/978-3-642-34444-2 · Zbl 1287.53001 [12] ; Coifman, Studia Math., 51, 241 (1974) [13] 10.1007/BFb0058946 · Zbl 0224.43006 [14] 10.1007/BF02656492 · Zbl 0939.35082 [15] ; Fabes, Illinois J. Math., 30, 536 (1986) [16] 10.1090/S0002-9947-99-02487-3 · Zbl 0976.35031 [17] 10.2307/2001585 · Zbl 0719.35007 [18] 10.1215/S0012-7094-97-09008-6 · Zbl 0941.42006 [19] 10.2307/2118595 · Zbl 0867.35037 [20] ; Hofmann, Illinois J. Math., 43, 752 (1999) [21] 10.1090/memo/0719 · Zbl 1149.35048 [22] 10.4171/RMI/287 · Zbl 0980.42011 [23] 10.1016/j.jfa.2004.10.016 · Zbl 1065.35125 [24] ; Hofmann, Ann. Acad. Sci. Fenn. Math., 28, 355 (2003) [25] 10.1215/S0012-7094-04-12222-5 · Zbl 1074.35041 [26] 10.1090/memo/1159 · Zbl 1371.28004 [27] 10.1007/BF02392081 · Zbl 0156.10701 [28] 10.1007/s12220-015-9630-6 · Zbl 1386.35070 [29] 10.2307/1968123 · JFM 60.1159.01 [30] ; Lanconelli, Rend. Sem. Mat. Univ. Politec. Torino, 52, 29 (1994) [31] 10.1090/memo/0545 · Zbl 0826.35041 [32] 10.1512/iumj.1988.37.37039 · Zbl 0698.35068 [33] 10.1142/3302 [34] ; Manfredini, Adv. Differential Equations, 2, 831 (1997) · Zbl 1023.35518 [35] 10.1512/iumj.1997.46.1277 · Zbl 0878.35010 [36] 10.1016/j.matpur.2016.02.007 · Zbl 1339.35147 [37] 10.1007/978-88-470-1781-8 · Zbl 1214.91002 [38] 10.1017/CBO9780511840531 · Zbl 0966.76002 [39] 10.2307/121104 · Zbl 1157.35391 [40] 10.1007/BF01789473 · Zbl 0477.35049 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.