×

zbMATH — the first resource for mathematics

Webs and the Plebański equation. (English) Zbl 1371.53015
Summary: We consider 3-webs, hyper-para-complex structures and integrable Segre structures on manifolds of even dimension and generalise the second heavenly Plebański equation in the context of higher-dimensional hyper-para-complex structures. We also characterise the Segre structures admitting a compatible hyper-para-complex structure in terms of systems of ordinary differential equations.

MSC:
53A60 Differential geometry of webs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Akivis, M. A. and Goldberg, V. V.Semiintegrable almost Grassmann structures. Differential Geom. Appl.10(3) (1999), 257-294. doi:10.1016/S0926-2245(99)00014-51692442 · Zbl 0921.53006
[2] Akivis, M. A. and Goldberg, V. V.Differential geometry of webs. In: Handbook of Differential Geometry, Vol. I (North-Holland, Amsterdam, 2000), 1-152, Chapter 1. · Zbl 0968.53001
[3] Alekseevsky, D., Medori, C. and Tomassini, A.Homogeneous para-Kähler Einstein manifolds. Russ. Math. Surv.64, No. 1 (2009). doi:10.1070/RM2009v064n01ABEH004591 · Zbl 1179.53050
[4] Boyer, C., A note on hyperhermitian four-manifolds, Proc. Amer. Math. Soc., 102, 157-164, (1988) · Zbl 0642.53073
[5] Calderbank, D., Integrable background geometries, SIGMA, 10, (2014) · Zbl 1288.53074
[6] Casey, S., Dunajski, M. and Tod, P.Twistor geometry of a pair of second order ODEs. Commun. Math Phys.321 (2013), 681-701. doi:10.1007/s00220-013-1729-73070033 · Zbl 1277.53044
[7] Chern, S.-S., Sur la géométrie d’un systéme d’équations différentialles du second ordre, Bull. Sci. Math., 63, 206-212, (1939) · JFM 65.1419.01
[8] Derdzinski, A.Connections with skew-symmetric Ricci tensor on surfaces. Results Math.52, No. 3-4 (2008), 223-245. doi:10.1007/s00025-008-0307-32443488 · Zbl 1206.53018
[9] Dunajski, M., A class of Einstein-Weyl spaces associated to an integrable system of hydrodynamic type, J. Geom. Phys., 51, 126-137, (2004) · Zbl 1110.53032
[10] Dunajski, M. and Kryński, W.Einstein-Weyl geometry, dispersionless Hirota equation and Veronese webs. Math. Proc. Camb. Phil. Soc.157, Issue 01 (2014), 139-150. doi:10.1017/S0305004114000164 · Zbl 1296.53036
[11] Dunajski, M. and Kryński, W.Point invariants of third-order ODEs and hyper-CR Einstein-Weyl structures. J. Geom. Phys.86 (2014), 296-302. doi:10.1016/j.geomphys.2014.08.0123282331 · Zbl 1316.34036
[12] Dunajski, M. and West, S.Anti-self-dual conformal structures with null Killing vectors from projective structures. Commun. Math. Phys.272 (2007), 85-118. doi:10.1007/s00220-007-0208-42291803 · Zbl 1147.53022
[13] Dunajski, M. and West, S.Anti-self-dual conformal structures in neutral signature. Recent developments in pseudo-Riemannian geometry, 113148, ESI Lect. Math. Phys., Eur. Math. Soc., Zurich, 2008.
[14] Ferapontov, E. and Kruglikov, B.Dispersionless integrable systems in 3D and Einstein-Weyl geometry. J. Differential Geom.97, No. 2 (2014), 215-254.3263506 · Zbl 1306.37084
[15] Finley, J. and Plebański, J.Further heavenly metrics and their symmetries. J. Math. Phys.17, No. 4 (1976), 585-596. doi:10.1063/1.522947
[16] Gelfand, I. M. and Zakharevich, I.Webs, Veronese curves, and bi-Hamiltonian systems. J. Funct. Anal.99, no. 1 (1991), 150-178. doi:10.1016/0022-1236(91)90057-C1120919 · Zbl 0739.58021
[17] Grossman, D. A.Torsion-free path geometries and integrable second order ODE systems. Selecta Mathematica. 6, Issue 4, (2000), 399-342. doi:10.1007/PL00001394 · Zbl 0997.53013
[18] Jakubczyk, B. and Kryński, W.Vector fields with distributions and invariants of ODEs. J. Geometric Mechanics.5, No. 1 (2013). · Zbl 1271.34041
[19] Kruglikov, B. and Morozov, O.SDiff(2) and uniqueness of the Plebański equation. J. Mathematical Physics.53, No. 8 (2012). doi:10.1063/1.4739749 · Zbl 1330.37043
[20] Kryński, W., Geometry of isotypic Kronecker webs, Central European J. Mathe., 10, 1872-1888, (2012) · Zbl 1275.53016
[21] Kryński, W., Webs and projective structures on a plane, Differential Geom. Appl., 37, 133-140, (2014) · Zbl 1305.53016
[22] Kryński, W.Paraconformal structures, ordinary differential equations and totally geodesic manifolds. J. Geom. Phys.103 (2016) doi: doi:10.1016/j.geomphys.2016.01.003.3464181 · Zbl 1432.53028
[23] Mettler, T.Reduction of β-integrable 2-Segre structures. Comm. Anal. Geom.21, No. 2 (2013), 331-353. doi:10.4310/CAG.2013.v21.n2.a33043749 · Zbl 1279.53026
[24] Nagy, P.Webs and curvature. In Web Theory and Related Topics. (Toulouse, December, 1996) (World Scientific Publishing, River Edge, 2001), 48-91. doi:10.1142/9789812794581_0003 · Zbl 1011.53015
[25] Panasyuk, A.Veronese webs for bi-Hamiltonian structures of higher corank. In Poisson Geometry (Warsaw, August 315, 1998), Banach Center Publ. 51 (2000) 251-261. · Zbl 0996.53053
[26] Penrose, R., Nonlinear gravitons and curved twistor theory, Gen. Relativity a Gravitation., 7, 31-52, (1976) · Zbl 0354.53025
[27] Plebański, J.Some solutions of complex Einstein equations. J. Math. Phys.16, No. 12 (1975), 2395-2402. doi:10.1063/1.522505
[28] Randall, M., Local obstructions to projective surfaces admitting skew-symmetric Ricci tensor, J. Geom. Phys., 76, 192-199, (2014) · Zbl 1287.53009
[29] Zakharevich, I. Nonlinear wave equation, nonlinear Riemann problem, and the twistor transform of Veronese webs. arXiv:math-ph/0006001 (2000).
[30] Zakharevich, I.Kronecker webs, bihamiltonian structures and the method of argument translation. Transform. Groups.6, No. 3 (2001), 267-300. doi:10.1007/BF012630931854712 · Zbl 0994.37034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.