×

Asymptotics of symmetric compound Poisson population models. (English) Zbl 1371.60173

Summary: Compound Poisson population models are particular conditional branching process models. A formula for the transition probabilities of the backward process for general compound Poisson models is verified. Symmetric compound Poisson models are defined in terms of a parameter \(\theta\in(0,\infty)\) and a power series \(\phi\) with positive radius \(r\) of convergence. It is shown that the asymptotic behaviour of symmetric compound Poisson models is mainly determined by the characteristic value \(\theta{r}\phi'({r}-)\). If \(\theta{r}\phi'({r}-)\geq1\), then the model is in the domain of attraction of the Kingman coalescent. If \(\theta{r}\phi'({r}-)<1\), then under mild regularity conditions a condensation phenomenon occurs which forces the model to be in the domain of attraction of a discrete-time Dirac coalescent. The proofs are partly based on the analytic saddle point method. They draw heavily from local limit theorems and from results of S. Janson [Probab. Surv. 9, 103–252 (2012; Zbl 1244.60013)] on simply generated trees, conditioned Galton-Watson trees, random allocations and condensation. Several examples of compound Poisson models are provided and analysed.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
60F05 Central limit and other weak theorems
60G09 Exchangeability for stochastic processes
92D25 Population dynamics (general)
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)

Citations:

Zbl 1244.60013
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] [1]BerestyckiN. and PitmanJ. (2007) Gibbs distributions for random partitions generated by a fragmentation process. J. Statist. Phys.127, 381-418.10.1007/s10955-006-9261-12314353 · Zbl 1126.82013 · doi:10.1007/s10955-006-9261-1
[2] [2]BillingsleyP. (1999) Convergence of Probability Measures, second edition, Wiley. · Zbl 0172.21201
[3] [3]BruijnN. G. (1981) Asymptotic Methods in Analysis, Dover. · Zbl 0556.41021
[4] [4]CharalambidesC. A. and KyriakoussisA. (1985) An asymptotic formula for the exponential polynomials and a central limit theorem for their coefficients. Discrete Math.54259-270.10.1016/0012-365X(85)90110-40790587 · Zbl 0567.33002 · doi:10.1016/0012-365X(85)90110-4
[5] [5]ComtetL. (1974) Advanced Combinatorics, Reidel. · Zbl 0283.05001
[6] [6]EldonB. and WakeleyJ. (2006) Coalescent processes when the distribution of offspring number among individuals is highly skewed. Genetics1722621-2633.16452141
[7] [7]FlajoletP. and SedgewickR. (2009) Analytic Combinatorics, Cambridge University Press.CBO9780511801655 · Zbl 1165.05001
[8] [8]GrahamR. L., KnuthD. E. and PatashnikO. (1994) Concrete Mathematics: A Foundation for Computer Science, second edition, Addison Wesley.1397498 · Zbl 0836.00001
[9] [9]HuilletT. and MöhleM. (2011) Population genetics models with skewed fertilities: A forward and backward analysis. Stochastic Models27521-554.10.1080/15326349.2011.593411 · Zbl 1367.92074 · doi:10.1080/15326349.2011.593411
[10] [10]HuilletT. and MöhleM. (2012) Correction on ‘Population genetics models with skewed fertilities: A forward and backward analysis’. Stochastic Models28527-532.10.1080/15326349.2012.700799 · Zbl 1367.92075 · doi:10.1080/15326349.2012.700799
[11] [11]HuilletT. and MöhleM. (2013) On the extended Moran model and its relation to coalescents with multiple collisions. Theor. Popul. Biol.875-14.10.1016/j.tpb.2011.09.00422001353 · Zbl 1296.92207 · doi:10.1016/j.tpb.2011.09.004
[12] [12]IbragimovI. A. and LinnikY. V. (1971) Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff. · Zbl 0219.60027
[13] [13]JansonS. (2012) Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation. Probab. Surv.9103-252.10.1214/11-PS1882908619 · Zbl 1244.60013 · doi:10.1214/11-PS188
[14] [14]KarlinS. and McGregorJ. (1964) Direct product branching processes and related Markov chains. Proc. Nat. Acad. Sci. USA51598-602.10.1073/pnas.51.4.598 · Zbl 0129.30504 · doi:10.1073/pnas.51.4.598
[15] [15]KarlinS. and McGregorJ. (1965) Direct product branching processes and related Markov chains I: Calculations of rates of approach to homozygosity. In Proc. Internat. Res. Sem., Springer, pp. 111-145. · Zbl 0294.60064
[16] [16]KingmanJ. F. C. (1982) The coalescent. Stoch. Process. Appl.13235-248.10.1016/0304-4149(82)90011-40671034 · Zbl 0491.60076 · doi:10.1016/0304-4149(82)90011-4
[17] [17]MöhleM. (2000) Total variation distances and rates of convergence for ancestral coalescent processes in exchangeable population models. Adv. Appl. Probab.32983-993.10.1239/aap/1013540343 · Zbl 1002.92015 · doi:10.1239/aap/1013540343
[18] [18]MöhleM. (2011) Coalescent processes derived from some compound Poisson population models. Electron. Comm. Probab.16567-582.2846651 · Zbl 1367.92105
[19] [19]MöhleM. and SagitovS. (2001) A classification of coalescent processes for haploid exchangeable population models. Ann. Probab.291547-1562.10.1214/aop/10153457611880231 · Zbl 1013.92029 · doi:10.1214/aop/1015345761
[20] [20]SagitovS. (2003) Convergence to the coalescent with simultaneous multiple mergers. J. Appl. Probab.40839-854.10.1239/jap/10674360852012671 · Zbl 1052.92044 · doi:10.1239/jap/1067436085
[21] [21]SchweinsbergJ. (2000) Coalescents with simultaneous multiple collisions. Electron. J. Probab.51-50.1781024 · Zbl 0959.60065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.