Juillet, Nicolas; Sigalotti, Mario Pliability, or the Whitney extension theorem for curves in Carnot groups. (English) Zbl 1372.22009 Anal. PDE 10, No. 7, 1637-1661 (2017). Simple arguments show that the Whitney extension theorem does not generalize to every ordered pair of Carnot groups. The authors consider the extendability problem for general ordered pairs \(({\mathbb R}, G)\), and characterize the nonabelian groups \(G\) for which the Whitney extension property holds, in terms of a newly introduced notion called pliability. They extend such results to all pliable Carnot groups, and show that the latter may be of arbitrarily large step. Reviewer: George Stoica (Saint John) Cited in 1 ReviewCited in 6 Documents MSC: 22E25 Nilpotent and solvable Lie groups 41A05 Interpolation in approximation theory 53C17 Sub-Riemannian geometry 54C20 Extension of maps 58C25 Differentiable maps on manifolds Keywords:Whitney extension theorem; Carnot group; rigid curve; horizontal curve PDF BibTeX XML Cite \textit{N. Juillet} and \textit{M. Sigalotti}, Anal. PDE 10, No. 7, 1637--1661 (2017; Zbl 1372.22009) Full Text: DOI arXiv OpenURL References: [1] 10.1007/978-3-662-06404-7 [2] 10.1007/s00209-008-0437-z · Zbl 1177.53032 [3] 10.5802/aif.3046 · Zbl 1358.43010 [4] 10.4171/162 · Zbl 1343.53001 [5] 10.4171/163 · Zbl 1351.53003 [6] 10.1137/0328050 · Zbl 0712.93005 [7] 10.1007/978-3-540-71897-0 · Zbl 1128.43001 [8] 10.1155/S1073792894000140 · Zbl 0845.57022 [9] 10.1007/BF01232676 · Zbl 0807.58007 [10] 10.4007/annals.2005.161.509 · Zbl 1102.58005 [11] 10.1090/S0894-0347-2013-00763-8 · Zbl 1290.46027 [12] ; Folland, Hardy spaces on homogeneous groups. Mathematical Notes, 28 (1982) · Zbl 0508.42025 [13] 10.1007/s002080100228 · Zbl 1057.49032 [14] 10.1007/BF02922053 · Zbl 1064.49033 [15] 10.1007/BF02255895 · Zbl 0941.53029 [16] 10.1016/0022-0396(82)90012-2 · Zbl 0496.49021 [17] 10.1007/s11425-011-4286-6 · Zbl 1276.53040 [18] 10.2422/2036-2145.2004.4.07 [19] 10.1007/s00526-016-1054-z · Zbl 1357.43007 [20] 10.5802/aif.2912 · Zbl 1312.53055 [21] ; Liu, Shortest paths for sub-Riemannian metrics on rank-two distributions. Mem. Amer. Math. Soc., 564 (1995) · Zbl 0843.53038 [22] ; Lusin, C. R. Acad. Sci. Paris, 154, 1688 (1912) [23] 10.1017/S1446788713000098 · Zbl 1279.22011 [24] ; Malgrange, Ideals of differentiable functions. Tata Institute of Fundamental Research Studies in Mathematics, 3 (1967) · Zbl 0177.17902 [25] 10.1007/BF02254656 · Zbl 0941.53021 [26] 10.2307/1971484 · Zbl 0678.53042 [27] 10.1093/imrn/rnq023 · Zbl 1203.53028 [28] 10.4171/162-1/1 · Zbl 0903.00015 [29] 10.4171/RMI/924 · Zbl 1406.53039 [30] 10.1016/0022-0396(76)90109-1 · Zbl 0346.49036 [31] 10.1137/0325011 · Zbl 0629.93012 [32] ; Vodop’yanov, Sibirsk. Mat. Zh., 47, 731 (2006) [33] ; Vodop’yanov, Dokl. Akad. Nauk, 406, 586 (2006) [34] 10.4310/MRL.2010.v17.n6.a12 · Zbl 1222.53037 [35] 10.2307/1989708 · JFM 60.0217.01 [36] 10.2307/1989844 · Zbl 0009.20803 [37] 10.1007/s12220-017-9807-2 · Zbl 1394.53040 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.