Spectrum of a singularly perturbed periodic thin waveguide. (English) Zbl 1372.35195

Summary: We consider a family \(\Omega^\varepsilon_{\varepsilon > 0}\) of periodic domains in \(\mathbb{R}^2\) with waveguide geometry and analyse spectral properties of the Neumann Laplacian \(-\Delta_{{\Omega}^\varepsilon}\) on \(\Omega^\varepsilon\). The waveguide \(\Omega^\varepsilon\) is a union of thin straight strips of width \(\varepsilon\) and a family of small protuberances with the so-called “room-and-passage” geometry. The protuberances are attached periodically, with a period \(\varepsilon\), along the strip upper boundary. We prove a (kind of) resolvent convergence of \(-\Delta_{\Omega^\varepsilon}\) to a certain operator on the line as \(\varepsilon \rightarrow 0\). Also we demonstrate Hausdorff convergence of the spectrum. In particular, we conclude that if the sizes of “passages” are appropriately scaled the first spectral gap of \(-\Delta_{\Omega^\varepsilon}\) is determined exclusively by geometric properties of the protuberances. The proofs are carried out using methods of homogenization theory.


35P15 Estimates of eigenvalues in context of PDEs
35P25 Scattering theory for PDEs
Full Text: DOI arXiv


[1] Arrieta, J. M.; Hale, J. K.; Han, Q., Eigenvalue problems for non-smoothly perturbed domains, J. Differential Equations, 91, 24-52, (1991) · Zbl 0736.35073
[2] Arrieta, J. M.; Pereira, M. C., Homogenization in a thin domain with an oscillatory boundary, J. Math. Pures Appl., 96, 29-57, (2011) · Zbl 1223.35039
[3] Arrieta, J. M.; Pereira, M. C., The Neumann problem in thin domains with very highly oscillatory boundaries, J. Math. Anal. Appl., 404, 86-104, (2013) · Zbl 1304.35056
[4] Bakharev, F. L.; Nazarov, S. A.; Ruotsalainen, K. M., A gap in the spectrum of the Neumann-Laplacian on a periodic waveguide, Appl. Anal., 92, 1889-1915, (2013) · Zbl 1302.35266
[5] Bakharev, F. L.; Nazarov, S. A., Gaps in the spectrum of a waveguide composed of domains with different limiting dimensions, Sib. Math. J., 56, 575-592, (2015) · Zbl 1327.35262
[6] Bakharev, F. L.; Ruotsalainen, K.; Taskinen, J., Spectral gaps for the linear surface wave model in periodic channels, Quart. J. Mech. Appl. Math., 67, 343-362, (2014) · Zbl 1302.76028
[7] Borisov, D. I.; Pankrashkin, K. V., Gap opening and split band edges in waveguides coupled by a periodic system of small windows, Math. Notes, 93, 660-675, (2013) · Zbl 1288.81046
[8] Borisov, D.; Pankrashkin, K., Quantum waveguides with small periodic perturbations: gaps and edges of Brillouin zones, J. Phys. A: Math. Theor., 46, (2013) · Zbl 1269.81050
[9] Borisov, D. I., On the band spectrum of a Schrödinger operator in a periodic system of domains coupled by small windows, Russ. J. Math. Phys., 22, 153-160, (2015) · Zbl 1319.35134
[10] Cardone, G.; Khrabustovskyi, A., Neumann spectral problem in a domain with very corrugated boundary, J. Differential Equations, 259, 2333-2367, (2015) · Zbl 1443.35009
[11] Cardone, G.; Khrabustovskyi, A., Example of a periodic Neumann waveguide with a gap in its spectrum, (Dittrich, J.; Kovařik, H.; Laptev, A., Functional Analysis and Operator Theory for Quantum Physics. The Pavel Exner Anniversary Volume, (2017), EMS Publ. House), 177-187 · Zbl 1372.81076
[12] Cardone, G.; Minutolo, V.; Nazarov, S., Gaps in the essential spectrum of periodic elastic waveguides, ZAMM Z. Angew. Math. Mech., 89, 729-741, (2009) · Zbl 1189.35201
[13] Cardone, G.; Nazarov, S.; Perugia, C., A gap in the essential spectrum of a cylindrical waveguide with a periodic perturbation of the surface, Math. Nachr., 283, 1222-1244, (2010) · Zbl 1213.35327
[14] Courant, R.; Hilbert, D., Methods of mathematical physics, (1953), Wiley-Interscience New York · Zbl 0729.00007
[15] Dörfler, W.; Lechleiter, A.; Plum, M.; Schneider, G.; Wieners, C., Photonic crystals. mathematical analysis and numerical approximation, (2011), Springer Berlin · Zbl 1238.78001
[16] Figotin, A.; Kuchment, P., Band-gap structure of the spectrum of periodic dielectric and acoustic media. I. scalar model, SIAM J. Appl. Math., 56, 68-88, (1996) · Zbl 0852.35014
[17] Figotin, A.; Kuchment, P., Band-gap structure of the spectrum of periodic dielectric and acoustic media. II. two-dimensional photonic crystals, SIAM J. Appl. Math., 56, 1561-1620, (1996) · Zbl 0868.35009
[18] Friedlander, L.; Solomyak, M., On the spectrum of narrow periodic waveguides, Russ. J. Math. Phys., 15, 238-242, (2008) · Zbl 1180.35392
[19] Hale, J. K.; Raugel, G., Reaction-diffusion equation on thin domains, J. Math. Pures Appl., 71, 33-95, (1992) · Zbl 0840.35044
[20] Khrabustovskyi, A.; Plum, M., Spectral properties of elliptic operators with double-contrast coefficients near a hyperplane, Asymptot. Anal., 98, 91-130, (2016) · Zbl 1341.47058
[21] Kuchment, P., Floquet theory for partial differential equations, (1993), Birkhauser Basel · Zbl 0789.35002
[22] Kuchment, P., The mathematics of photonic crystals, (Mathematical Modeling in Optical Science, Frontiers Appl. Math., vol. 22, (2001), SIAM Philadelphia, PA), 207-272, Chap. 7 · Zbl 0986.78004
[23] Mel’nyk, T. A.; Popov, A. V., Asymptotic analysis of boundary value problems in thin perforated domains with rapidly changing thickness, Nonlinear Oscil., 13, 57-84, (2010) · Zbl 1334.74057
[24] Mel’nyk, T. A.; Popov, A. V., Asymptotic analysis of boundary value and spectral problems in thin perforated domains with rapidly changing thickness and different limiting dimensions, Sb. Math., 203, 1169-1195, (2012) · Zbl 1259.35025
[25] Nazarov, S. A.; Ruotsalainen, K.; Taskinen, J., Essential spectrum of a periodic elastic waveguide may contain arbitrarily many gaps, Appl. Anal., 89, 109-124, (2010) · Zbl 1186.35123
[26] Nazarov, S. A., Opening of a gap in the continuous spectrum of a periodically perturbed waveguide, Math. Notes, 87, 738-756, (2010) · Zbl 1291.35143
[27] Nazarov, S. A., An example of multiple gaps in the spectrum of a periodic waveguide, Sb. Math., 201, 4, 569-594, (2010) · Zbl 1193.35038
[28] Nazarov, S. A., The asymptotic analysis of gaps in the spectrum of a waveguide perturbed with a periodic family of small voids, J. Math. Sci., 186, 247-301, (2012) · Zbl 1307.35100
[29] Nazarov, S. A., Gap opening around a given point of the spectrum of a cylindrical waveguide by means of a gentle periodic perturbation of walls, J. Math. Sci., 206, 288-314, (2015) · Zbl 1348.35148
[30] Pankrashkin, K., On the spectrum of a waveguide with periodic cracks, J. Phys. A: Math. Theor., 43, (2010) · Zbl 1204.81069
[31] Pereira, M. C.; Silva, R. P., Error estimates for a Neumann problem in highly oscillating thin domains, Discrete Contin. Dyn. Syst., 33, 803-817, (2013) · Zbl 1264.35025
[32] Pereira, M. C.; Silva, R. P., Correctors for the Neumann problem in thin domains with locally periodic oscillatory structure, Quart. Appl. Math., 73, 537-552, (2015) · Zbl 1329.35040
[33] Rauch, J.; Taylor, M., Potential and scattering theory on wildly perturbed domains, J. Funct. Anal., 18, 27-59, (1975) · Zbl 0293.35056
[34] Reed, M.; Simon, B., Methods of modern mathematical physics. IV. analysis of operators, (1979), Academic Press New York-San Francisco-London
[35] Sánchez-Palencia, E., Nonhomogeneous media and vibration theory, (1980), Springer-Verlag Berlin-New York
[36] Yoshitomi, K., Band gap of the spectrum in periodically curved quantum waveguides, J. Differential Equations, 142, 123-166, (1998) · Zbl 0901.35066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.