Huang, Yong; Lutwak, Erwin; Yang, Deane; Zhang, Gaoyong Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems. (English) Zbl 1372.52007 Acta Math. 216, No. 2, 325-388 (2016). The Brunn-Minkowski theory of convex bodies, centering around mixed volumes and related notions, has in recent decades been extended in different directions. One of these variants is the dual Brunn-Minkowski theory, which, to be more precise, is not based on an exact duality but on what has been called ‘conceptual duality’. Therefore, the correct ‘dual’ notions are not always easy to find. The present paper succeeds with establishing a satisfactory dual of the classical curvature measures, which, however, have first to be transformed to the unit sphere, via the inverse radial mapping, before the ‘dual’ correspondence becomes a perfect formal analogy. In striking similarity to the classical case, the authors introduce the dual curvature measures and dual area measures via local Steiner-type formulas. The dual area measures turn out to be (spherical) integrals of powers of radial functions; the dual curvature measures are, heuristically speaking, image measures of these under a combination of radial and Gauss maps. Weak continuity and valuation properties of the dual curvature measures are proved. Special cases of the dual curvature measures are, somewhat surprisingly, the cone-volume measure and, up to a constant factor, Aleksandrov’s integral curvature of the polar body. It is shown that the dual curvature measures can be considered as differentials of the dual quermassintegrals. This is proved and expanded by establishing dual generalizations of Aleksandrov’s variational formula, involving Wulff shapes and their polars. This includes also a new proof of Aleksandrov’s classical variational lemma, without the use of inequalities for mixed volumes. The main result of the paper is then a Minkowski-type existence theorem, giving a sufficient condition on an even Borel measure on the unit sphere to be the \(k\)th dual curvature measure of an origin-symmetric convex body. The proof, which needs delicate estimates, is based on a maximization problem; the symmetry assumptions are required for the proof that it has a solution. As for cone-volume measures, the sufficient conditions include some subspace concentration property; the general necessity of these conditions is not treated in this paper. Reviewer: Rolf Schneider (Freiburg i. Br.) Cited in 7 ReviewsCited in 143 Documents MSC: 52A20 Convex sets in \(n\) dimensions (including convex hypersurfaces) 52A38 Length, area, volume and convex sets (aspects of convex geometry) 35J20 Variational methods for second-order elliptic equations 52A40 Inequalities and extremum problems involving convexity in convex geometry Keywords:dual Brunn-Minkowski theory; dual quermassintegral; dual curvature measure; Wulff shape; Aleksandrov’s variational lemma; cone-volume measure; Aleksandrov’s integral curvature; surface area measure; \(L_{p}\)-Minkowski problem; logarithmic Minkowski problem PDFBibTeX XMLCite \textit{Y. Huang} et al., Acta Math. 216, No. 2, 325--388 (2016; Zbl 1372.52007) Full Text: DOI References: [1] Aleksandrov, A. D., On the theory of mixed volumes of convex bodies. III. Extension of two theorems of Minkowski on convex polyhedra to arbitrary convex bodies. Mat. Sb., 3 (1938), 27-46 (Russian); English translation in Aleksandrov, A. D., Selected Works, Part 1, Chapter 4, pp. 61-97, Gordon and Breach, Amsterdam, 1996 · Zbl 1040.53089 [2] Aleksandrov, A. D., On the area function of a convex body. Mat. Sb., 6 (1939), 167-174 (Russian); English translation in Aleksandrov, A. D., Selected Works, Part 1, Chapter 9, pp. 155-162, Gordon and Breach, Amsterdam, 1996 [3] Aleksandrov, A.D.: Existence and uniqueness of a convex surface with a given integral curvature. Dokl. Akad. Nauk SSSR 35, 131-134 (1942) · Zbl 0061.37604 [4] Alesker, S.: Continuous rotation invariant valuations on convex sets. Ann. of Math. 149, 977-1005 (1999) · Zbl 0941.52002 · doi:10.2307/121078 [5] Alesker, S.: Description of translation invariant valuations on convex sets with solution of P. McMullen’s conjecture. Geom. Funct. Anal. 11, 244-272 (2001) · Zbl 0995.52001 · doi:10.1007/PL00001675 [6] Alesker, S.: The multiplicative structure on continuous polynomial valuations. Geom. Funct. Anal. 14, 1-26 (2004) · Zbl 1072.52011 · doi:10.1007/s00039-004-0450-2 [7] Alesker, S., Bernig, A., Schuster, F.E.: Harmonic analysis of translation invariant valuations. Geom. Funct. Anal. 21, 751-773 (2011) · Zbl 1228.53088 · doi:10.1007/s00039-011-0125-8 [8] Andrews, B.: Gauss curvature flow: the fate of the rolling stones. Invent. Math. 138, 151-161 (1999) · Zbl 0936.35080 · doi:10.1007/s002220050344 [9] Andrews, B.: Classification of limiting shapes for isotropic curve flows. J. Amer. Math. Soc. 16, 443-459 (2003) · Zbl 1023.53051 · doi:10.1090/S0894-0347-02-00415-0 [10] Barthe, F., Guédon, O., Mendelson, S., Naor, A.: A probabilistic approach to the geometry of the ln \[{l^n_p}\] lpn-ball. Ann. Probab. 33, 480-513 (2005) · Zbl 1071.60010 · doi:10.1214/009117904000000874 [11] Berg, C.: Corps convexes et potentiels sphériques. Mat.-Fys. Medd. Danske Vid. Selsk. 37, 1-64 (1969) · Zbl 0181.38303 [12] Bernig, A.; Fu, JHG, No article title, Hermitian integral geometry. Ann. of Math., 173, 907-945 (2011) · Zbl 1230.52014 [13] Böröczky, K.J., Lutwak, E., Yang, D., Zhang, G.: The log-Brunn-Minkowski inequality. Adv. Math. 231, 1974-1997 (2012) · Zbl 1258.52005 · doi:10.1016/j.aim.2012.07.015 [14] Böröczky, K.J., Lutwak, E., Yang, D., Zhang, G.: The logarithmic Minkowski problem. J. Amer. Math. Soc. 26, 831-852 (2013) · Zbl 1272.52012 · doi:10.1090/S0894-0347-2012-00741-3 [15] Böröczky, K.J., Lutwak, E., Yang, D., Zhang, G.: Affine images of isotropic measures. J. Differential Geom. 99, 407-442 (2015) · Zbl 1325.28004 [16] Bourgain, J.: On the Busemann-Petty problem for perturbations of the ball. Geom. Funct. Anal. 1, 1-13 (1991) · Zbl 0752.52001 · doi:10.1007/BF01895416 [17] Caffarelli, L.A.: Interior \[{W^{2, p}}\] W2,p estimates for solutions of the Monge-Ampère equation. Ann. of Math. 131, 135-150 (1990) · Zbl 0704.35044 · doi:10.2307/1971510 [18] Chen, \[W.: L_p\] Lp Minkowski problem with not necessarily positive data. Adv. Math. 201, 77-89 (2006) · Zbl 1102.34023 · doi:10.1016/j.aim.2004.11.007 [19] Cheng, S.Y., Yau, S.T.: On the regularity of the solution of the n-dimensional Minkowski problem. Comm. Pure Appl. Math. 29, 495-516 (1976) · Zbl 0363.53030 · doi:10.1002/cpa.3160290504 [20] Chou, K.S., Wang, X.-J.: The \[L_p\] Lp-Minkowski problem and the Minkowski problem in centroaffine geometry. Adv. Math. 205, 33-83 (2006) · Zbl 1245.52001 · doi:10.1016/j.aim.2005.07.004 [21] Cianchi, A., Lutwak, E., Yang, D., Zhang, G.: Affine Moser-Trudinger and Morrey-Sobolev inequalities. Calc. Var. Partial Differential Equations 36, 419-436 (2009) · Zbl 1202.26029 · doi:10.1007/s00526-009-0235-4 [22] Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Textbooks in Mathematics. CRC Press, Boca Raton, FL (2015) · Zbl 1310.28001 [23] Federer, H.: Curvature measures. Trans. Amer. Math. Soc. 93, 418-491 (1959) · Zbl 0089.38402 · doi:10.1090/S0002-9947-1959-0110078-1 [24] Fenchel, W. & Jessen, B., Mengenfunktionen und konvexe Körper. Danske Vid. Selskab. Mat.-Fys. Medd., 16 (1938), 1-31 · Zbl 1223.52007 [25] Firey, W.J.: Christoffel’s problem for general convex bodies. Mathematika 15, 7-21 (1968) · Zbl 0162.54303 · doi:10.1112/S0025579300002321 [26] Gardner, R.J.: A positive answer to the Busemann-Petty problem in three dimensions. Ann. of Math. 140, 435-447 (1994) · Zbl 0826.52010 · doi:10.2307/2118606 [27] Gardner, R. J., Geometric Tomography. Encyclopedia of Mathematics and its Applications, 58. Cambridge Univ. Press, New York, 2006 · Zbl 1329.52003 [28] Gardner, R.J., Koldobsky, A., Schlumprecht, T.: An analytic solution to the Busemann-Petty problem on sections of convex bodies. Ann. of Math. 149, 691-703 (1999) · Zbl 0937.52003 · doi:10.2307/120978 [29] Goodey, P., Yaskin, V., Yaskina, M.: A Fourier transform approach to Christoffel’s problem. Trans. Amer. Math. Soc. 363, 6351-6384 (2011) · Zbl 1234.52007 · doi:10.1090/S0002-9947-2011-05267-0 [30] Grinberg, E., Zhang, G.: Convolutions, transforms, and convex bodies. Proc. London Math. Soc. 78, 77-115 (1999) · Zbl 0974.52001 · doi:10.1112/S0024611599001653 [31] Gruber, P. M., Convex and Discrete Geometry. Grundlehren der Mathematischen Wissenschaften, 336. Springer, Berlin-Heidelberg, 2007 · Zbl 1326.35009 [32] Guan, B., Guan, P.: Convex hypersurfaces of prescribed curvatures. Ann. of Math. 156, 655-673 (2002) · Zbl 1025.53028 · doi:10.2307/3597202 [33] Guan, P., Li, J., Li, Y.Y.: Hypersurfaces of prescribed curvature measure. Duke Math. J. 161, 1927-1942 (2012) · Zbl 1254.53073 · doi:10.1215/00127094-1645550 [34] Guan, \[P., Li, Y.Y.: C^{1,1}\] C1,1 estimates for solutions of a problem of Alexandrov. Comm. Pure Appl. Math. 50, 789-811 (1997) · Zbl 0879.53047 · doi:10.1002/(SICI)1097-0312(199708)50:8<789::AID-CPA4>3.0.CO;2-2 [35] Guan, P., Lin, C.S., Ma, X.-N.: The existence of convex body with prescribed curvature measures. Int. Math. Res. Not. IMRN 11, 1947-1975 (2009) · Zbl 1178.53010 [36] Guan, P., Ma, X.-N.: The Christoffel-Minkowski problem. I. Convexity of solutions of a Hessian equation. Invent. Math. 151, 553-577 (2003) · Zbl 1213.35213 · doi:10.1007/s00222-002-0259-2 [37] Haberl, C.: Minkowski valuations intertwining with the special linear group. J. Eur. Math. Soc. (JEMS) 14, 1565-1597 (2012) · Zbl 1270.52018 · doi:10.4171/JEMS/341 [38] Haberl, C., Parapatits, L.: The centro-affine Hadwiger theorem. J. Amer. Math. Soc. 27, 685-705 (2014) · Zbl 1319.52006 · doi:10.1090/S0894-0347-2014-00781-5 [39] Haberl, C., Parapatits, L.: Valuations and surface area measures. J. Reine Angew. Math. 687, 225-245 (2014) · Zbl 1295.52018 [40] Haberl, C., Schuster, F.E.: Asymmetric affine \[L_p\] Lp Sobolev inequalities. J. Funct. Anal. 257, 641-658 (2009) · Zbl 1180.46023 · doi:10.1016/j.jfa.2009.04.009 [41] Haberl, C., Schuster, F.E.: General \[L_p\] Lp affine isoperimetric inequalities. J. Differential Geom. 83, 1-26 (2009) · Zbl 1185.52005 [42] Cifre, Hernández: M.A. & Saorín, E., On differentiability of quermassintegrals. Forum Math. 22, 115-126 (2010) · Zbl 1194.52004 [43] Huang, Y., Liu, J., Xu, L.: On the uniqueness of \[L_p\] Lp-Minkowski problems: the constant p-curvature case in \[{\mathbb{R}^3}\] R3. Adv. Math. 281, 906-927 (2015) · Zbl 1329.52003 · doi:10.1016/j.aim.2015.02.021 [44] Jian, H., Lu, J., Wang, X.-J.: Nonuniqueness of solutions to the \[L_p\] Lp-Minkowski problem. Adv. Math. 281, 845-856 (2015) · Zbl 1326.35009 · doi:10.1016/j.aim.2015.05.010 [45] Koldobsky, A., Fourier Analysis in Convex Geometry. Mathematical Surveys and Monographs, 116. Amer. Math. Soc., Providence, RI, 2005 · Zbl 0867.52003 [46] Lu, J., Wang, X.J.: Rotationally symmetric solutions to the \[L_p\] Lp-Minkowski problem. J. Differential Equations 254, 983-1005 (2013) · Zbl 1273.52006 · doi:10.1016/j.jde.2012.10.008 [47] Ludwig, M.: Ellipsoids and matrix-valued valuations. Duke Math. J. 119, 159-188 (2003) · Zbl 1033.52012 · doi:10.1215/S0012-7094-03-11915-8 [48] Lu, J., Wang, X.J.: Intersection bodies and valuations. Amer. J. Math. 128, 1409-1428 (2006) · Zbl 1115.52007 · doi:10.1353/ajm.2006.0046 [49] Lu, J., Wang, X.J.: Minkowski areas and valuations. J. Differential Geom. 86, 133-161 (2010) · Zbl 1215.52004 [50] Lu, J., Wang, X.J.: Valuations on Sobolev spaces. Amer. J. Math. 134, 827-842 (2012) · Zbl 1255.52013 [51] Ludwig, M., Reitzner, M.: A classification of SL(n) invariant valuations. Ann. of Math. 172, 1219-1267 (2010) · Zbl 1223.52007 · doi:10.4007/annals.2010.172.1223 [52] Lutwak, E.: Dual mixed volumes. Pacific J. Math. 58, 531-538 (1975) · Zbl 0273.52007 · doi:10.2140/pjm.1975.58.531 [53] Lutwak, E.: Intersection bodies and dual mixed volumes. Adv. in Math. 71, 232-261 (1988) · Zbl 0657.52002 · doi:10.1016/0001-8708(88)90077-1 [54] Lutwak, E.: The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem. J. Differential Geom. 38, 131-150 (1993) · Zbl 0788.52007 [55] Lutwak, E., Oliker, V.: On the regularity of solutions to a generalization of the Minkowski problem. J. Differential Geom. 41, 227-246 (1995) · Zbl 0867.52003 [56] Lutwak, E., Yang, D., Zhang, G.: \[L_p\] Lp affine isoperimetric inequalities. J. Differential Geom. 56, 111-132 (2000) · Zbl 1034.52009 [57] Lutwak, E., Yang, D., Zhang, G.: A new ellipsoid associated with convex bodies. Duke Math. J. 104, 375-390 (2000) · Zbl 0974.52008 · doi:10.1215/S0012-7094-00-10432-2 [58] Lutwak, E., Yang, D., Zhang, G.: Sharp affine \[L_p\] Lp Sobolev inequalities. J. Differential Geom. 62, 17-38 (2002) · Zbl 1073.46027 [59] Lutwak, E., Yang, D., Zhang, G.: Volume inequalities for subspaces of \[L_p\] Lp. J. Differential Geom. 68, 159-184 (2004) · Zbl 1119.52006 [60] Lutwak, E., Yang, D., Zhang, G.: Orlicz centroid bodies. J. Differential Geom. 84, 365-387 (2010) · Zbl 1206.49050 [61] Lutwak, E., Yang, D., Zhang, G.: Orlicz projection bodies. Adv. Math. 223, 220-242 (2010) · Zbl 1437.52006 · doi:10.1016/j.aim.2009.08.002 [62] Lutwak, E., Zhang, G.: Blaschke-Santaló inequalities. J. Differential Geom. 47, 1-16 (1997) · Zbl 0906.52003 [63] Minkowski, H., Allgemeine Lehrsätze über die convexen Polyeder. Nachr. Ges. Wiss. Göttingen, (1897), 198-219 · JFM 28.0427.01 [64] Minkowski, H., Volumen und Oberfläche. Math. Ann., 57 (1903), 447-495 · JFM 34.0649.01 [65] Naor, A.: The surface measure and cone measure on the sphere of \[{l^n_p}\] lpn. Trans. Amer. Math. Soc. 359, 1045-1079 (2007) · Zbl 1109.60006 · doi:10.1090/S0002-9947-06-03939-0 [66] Naor, A., Romik, D.: Projecting the surface measure of the sphere of \[l^n_p\] lpn. Ann. Inst. H. Poincaré Probab. Statist. 39, 241-261 (2003) · Zbl 1012.60025 · doi:10.1016/S0246-0203(02)00008-0 [67] Nirenberg, L.: The Weyl and Minkowski problems in differential geometry in the large. Comm. Pure Appl. Math. 6, 337-394 (1953) · Zbl 0051.12402 · doi:10.1002/cpa.3160060303 [68] Oliker, V.: Embedding \[\mathbf{S}^nSn\] into \[\mathbf{R}^{n+1}Rn+1\] with given integral Gauss curvature and optimal mass transport on \[\mathbf{S}^nSn\]. Adv. Math. 213, 600-620 (2007) · Zbl 1233.49024 · doi:10.1016/j.aim.2007.01.005 [69] Paouris, G., Werner, E.M.: Relative entropy of cone measures and \[L_p\] Lp centroid bodies. Proc. Lond. Math. Soc. 104, 253-286 (2012) · Zbl 1246.52008 · doi:10.1112/plms/pdr030 [70] Pogorelov, A. V., The existence of a closed convex hypersurface with a given function of the principal radii of a curve. Dokl. Akad. Nauk SSSR, 197: 526-528 (Russian). English translation in Soviet Math. Dokl. 12(1971), 494-497 (1971) · Zbl 0224.53001 [71] Pogorelov, A.V.: The Minkowski Multidimensional Problem. Winston & Sons, Washington, DC (1978) · Zbl 0387.53023 [72] Schneider, R., No article title, Das Christoffel-Problem für Polytope. Geom. Dedicata, 6, 81-85 (1977) · Zbl 0363.52007 [73] Pogorelov, A.V.: Curvature measures of convex bodies. Ann. Mat. Pura Appl. 116, 101-134 (1978) · Zbl 0389.52006 · doi:10.1007/BF02413869 [74] Pogorelov, A.V.: Bestimmung konvexer Körper durch Krümmungsmasse. Comment. Math. Helv. 54, 42-60 (1979) · Zbl 0392.52004 · doi:10.1007/BF02566255 [75] Pogorelov, A. V., Convex Bodies: the Brunn-Minkowski Theory. Encyclopedia of Mathematics and its Applications, 151. Cambridge Univ. Press, Cambridge, 2014 · Zbl 1321.52015 [76] Schuster, F.E.: Crofton measures and Minkowski valuations. Duke Math. J. 154, 1-30 (2010) · Zbl 1205.52004 · doi:10.1215/00127094-2010-033 [77] Schuster, F.E., Wannerer, T.: Even Minkowski valuations. Amer. J. Math. 137, 1651-1683 (2015) · Zbl 1336.52020 · doi:10.1353/ajm.2015.0041 [78] Trudinger, N. S. & Wang, X.-J., The Monge-Ampère equation and its geometric applications, in Handbook of Geometric Analysis, Adv. Lect. Math., 7, pp. 467-524. Int. Press, Somerville, MA, 2008 · Zbl 1156.35033 [79] Zhang, G.: The affine Sobolev inequality. J. Differential Geom. 53, 183-202 (1999) · Zbl 1040.53089 [80] Zhang, G.: Dual kinematic formulas. Trans. Amer. Math. Soc. 351, 985-995 (1999) · Zbl 0961.52001 · doi:10.1090/S0002-9947-99-02053-X [81] Zhang, G.: A positive solution to the Busemann-Petty problem in \[\mathbf{R}^4\] R4. Ann. of Math. 149, 535-543 (1999) · Zbl 0937.52004 · doi:10.2307/120974 [82] Zhu, G.: The logarithmic Minkowski problem for polytopes. Adv. Math. 262, 909-931 (2014) · Zbl 1321.52015 · doi:10.1016/j.aim.2014.06.004 [83] Zhang, G.: The centro-affine Minkowski problem for polytopes. J. Differential Geom. 101, 159-174 (2015) · Zbl 1331.53016 · doi:10.1016/j.difgeo.2015.02.002 [84] Zhang, G.: The \[L_p\] Lp Minkowski problem for polytopes for 0<p<1. J. Funct. Anal. 269, 1070-1094 (2015) · Zbl 1335.52023 · doi:10.1016/j.jfa.2015.09.021 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.