×

zbMATH — the first resource for mathematics

A vector field method for relativistic transport equations with applications. (English) Zbl 1373.35046
Summary: We adapt the vector field method of Klainerman to the study of relativistic transport equations. First, we prove robust decay estimates for velocity averages of solutions to the relativistic massive and massless transport equations, without any compact support requirements (in \(x\) or \(v\)) for the distribution functions. In the second part of this article, we apply our method to the study of the massive and massless Vlasov-Nordström systems. In the massive case, we prove global existence and (almost) optimal decay estimates for solutions in dimensions \(n \geq 4\) under some smallness assumptions. In the massless case, the system decouples and we prove optimal decay estimates for the solutions in dimensions \(n \geq 4\) for arbitrarily large data, and in dimension \(3\) under some smallness assumptions, exploiting a certain form of the null condition satisfied by the equations. The \(3\)-dimensional massive case requires an extension of our method and will be treated in future work.

MSC:
35B40 Asymptotic behavior of solutions to PDEs
35Q83 Vlasov equations
83C30 Asymptotic procedures (radiation, news functions, \(\mathcal{H} \)-spaces, etc.) in general relativity and gravitational theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] 10.1016/S0294-1449(16)30405-X · Zbl 0593.35076
[2] 10.1088/0264-9381/20/9/310 · Zbl 1030.83018
[3] 10.1007/s00220-006-0029-x · Zbl 1123.35080
[4] 10.1016/j.jde.2004.02.011 · Zbl 1060.35027
[5] 10.4171/031 · Zbl 1117.35001
[6] ; Christodoulou, The global nonlinear stability of the Minkowski space. Princeton Mathematical Series, 41, (1993)
[7] ; Crampin, Applicable differential geometry. London Mathematical Society Lecture Note Series, 59, (1986) · Zbl 0606.53001
[8] 10.1142/S0219891606000926 · Zbl 1115.35135
[9] 10.1080/03605309208820879 · Zbl 0767.35068
[10] 10.1007/s00205-011-0405-3 · Zbl 1228.35252
[11] 10.1002/cpa.3160380512 · Zbl 0597.35100
[12] 10.1002/cpa.3160380305 · Zbl 0635.35059
[13] 10.1002/cpa.3160460202 · Zbl 0805.35104
[14] 10.1007/978-1-4612-2084-8
[15] 10.1007/s00220-015-2549-8 · Zbl 1359.83003
[16] ; Lieb, Analysis. Graduate Studies in Mathematics, 14, (1997)
[17] 10.4007/annals.2010.171.1401 · Zbl 1192.53066
[18] 10.1002/cpa.3160150303 · Zbl 0196.41202
[19] 10.1098/rspa.1968.0151 · Zbl 0157.41502
[20] 10.1016/j.anihpc.2005.02.001 · Zbl 1092.85001
[21] 10.1007/BF02096962 · Zbl 0774.53056
[22] 10.1093/acprof:oso/9780199680290.001.0001
[23] ; Sarbach, Classical Quantum Gravity, 31, (2014)
[24] 10.1063/1.4861955
[25] 10.1512/iumj.2004.53.2515 · Zbl 1059.35152
[26] 10.1007/s40818-016-0016-2 · Zbl 1397.35033
[27] 10.1007/s40818-017-0026-8 · Zbl 06919598
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.