Comte, Fabienne; Johannes, Jan Adaptive functional linear regression. (English) Zbl 1373.62350 Ann. Stat. 40, No. 6, 2765-2797 (2012). Summary: We consider the estimation of the slope function in functional linear regression, where scalar responses are modeled in dependence of random functions. H. Cardot and J. Johannes [J. Multivariate Anal. 101, No. 2, 395–408 (2010; Zbl 1178.62032)] have shown that a thresholded projection estimator can attain up to a constant minimax-rates of convergence in a general framework which allows us to cover the prediction problem with respect to the mean squared prediction error as well as the estimation of the slope function and its derivatives. This estimation procedure, however, requires an optimal choice of a tuning parameter with regard to certain characteristics of the slope function and the covariance operator associated with the functional regressor. As this information is usually inaccessible in practice, we investigate a fully data-driven choice of the tuning parameter which combines model selection and Lepski’s method. It is inspired by the recent work of A. Goldenshluger and O. Lepski [Ann. Stat. 39, No. 3, 1608–1632 (2011; Zbl 1234.62035)]. The tuning parameter is selected as minimizer of a stochastic penalized contrast function imitating Lepski’s method among a random collection of admissible values. This choice of the tuning parameter depends only on the data and we show that within the general framework the resulting data-driven thresholded projection estimator can attain minimax-rates up to a constant over a variety of classes of slope functions and covariance operators. The results are illustrated considering different configurations which cover in particular the prediction problem as well as the estimation of the slope and its derivatives. A simulation study shows the reasonable performance of the fully data-driven estimation procedure. Cited in 20 Documents MSC: 62J05 Linear regression; mixed models 62G35 Nonparametric robustness 62G20 Asymptotic properties of nonparametric inference Keywords:adaptation; model selestion; Lepski’s method; linear Galerkin approach; prediction; derivative estimation; minimax theory Citations:Zbl 1178.62032; Zbl 1234.62035 Software:fda (R) × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Barron, A., Birgé, L. and Massart, P. (1999). Risk bounds for model selection via penalization. Probab. Theory Related Fields 113 301-413. · Zbl 0946.62036 · doi:10.1007/s004400050210 [2] Bosq, D. (2000). Linear Processes in Function Spaces : Theory and Applications. Lecture Notes in Statistics 149 . Springer, New York. · Zbl 0962.60004 · doi:10.1007/978-1-4612-1154-9 [3] Butucea, C. and Tsybakov, A. B. (2007). Sharp optimality in density deconvolution with dominating bias. I. Teor. Veroyatn. Primen. 52 111-128. · Zbl 1141.62021 · doi:10.1137/S0040585X97982840 [4] Butucea, C. and Tsybakov, A. B. (2007). Sharp optimality in density deconvolution with dominating bias. II. Teor. Veroyatn. Primen. 52 336-349. · Zbl 1142.62017 · doi:10.1137/S0040585X97982992 [5] Cai, T. and Zhou, H. (2008). Adaptive functional linear regression. Technical report. Available at . [6] Cardot, H., Ferraty, F. and Sarda, P. (1999). Functional linear model. Statist. Probab. Lett. 45 11-22. · Zbl 0962.62081 · doi:10.1016/S0167-7152(99)00036-X [7] Cardot, H., Ferraty, F. and Sarda, P. (2003). Spline estimators for the functional linear model. Statist. Sinica 13 571-591. · Zbl 1050.62041 [8] Cardot, H. and Johannes, J. (2010). Thresholding projection estimators in functional linear models. J. Multivariate Anal. 101 395-408. · Zbl 1178.62032 · doi:10.1016/j.jmva.2009.03.001 [9] Cardot, H., Mas, A. and Sarda, P. (2007). CLT in functional linear regression models. Probab. Theory Related Fields 138 325-361. · Zbl 1113.60025 · doi:10.1007/s00440-006-0025-2 [10] Comte, F. and Johannes, J. (2010). Adaptive estimation in circular functional linear models. Math. Methods Statist. 19 42-63. · Zbl 1282.62071 · doi:10.3103/S1066530710010035 [11] Comte, F., Rozenholc, Y. and Taupin, M.-L. (2006). Penalized contrast estimator for adaptive density deconvolution. Canad. J. Statist. 34 431-452. · Zbl 1104.62033 · doi:10.1002/cjs.5550340305 [12] Crambes, C., Kneip, A. and Sarda, P. (2009). Smoothing splines estimators for functional linear regression. Ann. Statist. 37 35-72. · Zbl 1169.62027 · doi:10.1214/07-AOS563 [13] Efromovich, S. and Koltchinskii, V. (2001). On inverse problems with unknown operators. IEEE Trans. Inform. Theory 47 2876-2894. · Zbl 1017.94508 · doi:10.1109/18.959267 [14] Engl, H. W., Hanke, M. and Neubauer, A. (2000). Regularization of Inverse Problems. Mathematics and Its Applications 375 . Kluwer Academic Press, Dordrecht. · Zbl 0711.34018 [15] Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis : Theory and Practice . Springer, New York. · Zbl 1119.62046 · doi:10.1007/0-387-36620-2 [16] Forni, M. and Reichlin, L. (1998). Let’s get real: A factor analytical approach to disaggregated business cycle dynamics. Rev. Econom. Stud. 65 453-473. · Zbl 0911.90087 · doi:10.1111/1467-937X.00053 [17] Frank, I. and Friedman, J. (1993). A statistical view of some chemometrics regression tools. Technometrics 35 109-148. · Zbl 0775.62288 · doi:10.2307/1269656 [18] Goldenshluger, A. and Lepski, O. (2011). Bandwidth selection in kernel density estimation: Oracle inequalities and adaptive minimax optimality. Ann. Statist. 39 1608-1632. · Zbl 1234.62035 · doi:10.1214/11-AOS883 [19] Goldenshluger, A. and Tsybakov, A. (2001). Adaptive prediction and estimation in linear regression with infinitely many parameters. Ann. Statist. 29 1601-1619. · Zbl 1043.62076 · doi:10.1214/aos/1015345956 [20] Goldenshluger, A. and Tsybakov, A. (2003). Optimal prediction for linear regression with infinitely many parameters. J. Multivariate Anal. 84 40-60. · Zbl 1038.62058 · doi:10.1016/S0047-259X(02)00006-4 [21] Hall, P. and Horowitz, J. L. (2007). Methodology and convergence rates for functional linear regression. Ann. Statist. 35 70-91. · Zbl 1114.62048 · doi:10.1214/009053606000000957 [22] Heinz, E. (1951). Beiträge zur Störungstheorie der Spektralzerlegung. Math. Ann. 123 415-438. · Zbl 0043.32603 · doi:10.1007/BF02054965 [23] Hoffmann, M. and Reiss, M. (2008). Nonlinear estimation for linear inverse problems with error in the operator. Ann. Statist. 36 310-336. · Zbl 1134.65038 · doi:10.1214/009053607000000721 [24] Johannes, J. and Schenk, R. (2010). On rate optimal local estimation in functional linear model. Univ. Catholique de Louvain. Available at . · Zbl 1337.62161 [25] Kawata, T. (1972). Fourier Analysis in Probability Theory. Probability and Mathematical Statistics 15 . Academic Press, New York. · Zbl 0271.60022 [26] Klein, T. and Rio, E. (2005). Concentration around the mean for maxima of empirical processes. Ann. Probab. 33 1060-1077. · Zbl 1066.60023 · doi:10.1214/009117905000000044 [27] Lepskiĭ, O. V. (1990). A problem of adaptive estimation in Gaussian white noise. Theory Probab. Appl. 35 454-466. · Zbl 0725.62075 [28] Marx, B. D. and Eilers, P. H. (1999). Generalized linear regression on sampled signals and curves: A p-spline approach. Technometrics 41 1-13. [29] Massart, P. (2007). Concentration Inequalities and Model Selection. Lecture Notes in Math. 1896 . Springer, Berlin. Lectures from the 33rd Summer School on Probability Theory held in Saint-Flour, July 6-23, 2003, with a foreword by Jean Picard. · Zbl 1170.60006 · doi:10.1007/978-3-540-48503-2 [30] Mathé, P. (2006). The Lepskiĭ principle revisited. Inverse Problems 22 L11-L15. [31] Müller, H.-G. and Stadtmüller, U. (2005). Generalized functional linear models. Ann. Statist. 33 774-805. · Zbl 1068.62048 · doi:10.1214/009053604000001156 [32] Natterer, F. (1984). Error bounds for Tikhonov regularization in Hilbert scales. Appl. Anal. 18 29-37. · Zbl 0504.65031 · doi:10.1080/00036818408839508 [33] Neubauer, A. (1988). When do Sobolev spaces form a Hilbert scale? Proc. Amer. Math. Soc. 103 557-562. · Zbl 0665.46029 · doi:10.2307/2047179 [34] Petrov, V. V. (1995). Limit Theorems of Probability Theory : Sequences of Independent Random Variables. Oxford Studies in Probability 4 . Clarendon Press, Oxford. · Zbl 0826.60001 [35] Preda, C. and Saporta, G. (2005). PLS regression on a stochastic process. Comput. Statist. Data Anal. 48 149-158. · Zbl 1429.62224 [36] Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis , 2nd ed. Springer, New York. · Zbl 1079.62006 [37] Talagrand, M. (1996). New concentration inequalities in product spaces. Invent. Math. 126 505-563. · Zbl 0893.60001 · doi:10.1007/s002220050108 [38] Verzelen, N. (2010). High-dimensional Gaussian model selection on a Gaussian design. Ann. Inst. Henri Poincaré Probab. Stat. 46 480-524. · Zbl 1191.62076 · doi:10.1214/09-AIHP321 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.