×

Asymptotic properties of the maximum likelihood estimation in misspecified hidden Markov models. (English) Zbl 1373.62436

Summary: Let \((Y_{k})_{k\in\mathbb{Z}}\) be a stationary sequence on a probability space \((\Omega,\mathcal{A},\mathbb{P})\) taking values in a standard Borel space \(\mathsf{Y}\). Consider the associated maximum likelihood estimator with respect to a parametrized family of hidden Markov models such that the law of the observations \((Y_{k})_{k\in\mathbb{Z}}\) is not assumed to be described by any of the hidden Markov models of this family. In this paper we investigate the consistency of this estimator in such misspecified models under mild assumptions.

MSC:

62M09 Non-Markovian processes: estimation
62M05 Markov processes: estimation; hidden Markov models
62F12 Asymptotic properties of parametric estimators
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] Barron, A. R. (1985). The strong ergodic theorem for densities: Generalized Shannon-McMillan-Breiman theorem. Ann. Probab. 13 1292-1303. · Zbl 0608.94001
[2] Baum, L. E. and Petrie, T. (1966). Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Statist. 37 1554-1563. · Zbl 0144.40902
[3] Budhiraja, A. and Ocone, D. (1997). Exponential stability of discrete-time filters for bounded observation noise. Systems Control Lett. 30 185-193. · Zbl 0901.93066
[4] Cappé, O., Moulines, E. and Rydén, T. (2005). Inference in Hidden Markov Models . Springer, New York. · Zbl 1080.62065
[5] Churchill, G. (1992). Hidden Markov chains and the analysis of genome structure. Computers and Chemistry 16 107-115. · Zbl 0752.92015
[6] Douc, R., Fort, G., Moulines, E. and Priouret, P. (2009). Forgetting the initial distribution for hidden Markov models. Stochastic Process. Appl. 119 1235-1256. · Zbl 1159.93357
[7] Douc, R. and Matias, C. (2001). Asymptotics of the maximum likelihood estimator for general hidden Markov models. Bernoulli 7 381-420. · Zbl 0987.62018
[8] Douc, R., Moulines, E., Olsson, J. and van Handel, R. (2011). Consistency of the maximum likelihood estimator for general hidden Markov models. Ann. Statist. 39 474-513. · Zbl 1209.62194
[9] Douc, R., Moulines, É. and Rydén, T. (2004). Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regime. Ann. Statist. 32 2254-2304. · Zbl 1056.62028
[10] Fomby, T. B. and Hill, R. C., eds. (2003). Maximum Likelihood Estimation of Misspecified Models : Twenty Years Later. Advances in Econometrics 17 . Elsevier, Amsterdam. · Zbl 1136.62410
[11] Fredkin, D. R. and Rice, J. A. (1987). Correlation functions of a function of a finite-state Markov process with application to channel kinetics. Math. Biosci. 87 161-172. · Zbl 0632.92003
[12] Fuh, C.-D. (2006). Efficient likelihood estimation in state space models. Ann. Statist. 34 2026-2068. · Zbl 1246.62185
[13] Fuh, C.-D. (2010). Reply to “On some problems in the article Efficient likelihood estimation in state space models” by Cheng-Der Fuh [Ann. Statist. 34 (2006) 2026-2068] [MR2604693]. Ann. Statist. 38 1282-1285. · Zbl 1246.62185
[14] Genon-Catalot, V. and Laredo, C. (2006). Leroux’s method for general hidden Markov models. Stochastic Process. Appl. 116 222-243. · Zbl 1099.60022
[15] Huber, P. J. (1967). The behavior of maximum likelihood estimates under nonstandard conditions. In Proc. Fifth Berkeley Sympos. Math. Statist. and Probability ( Berkeley , Calif. , 1965 / 66), Vol. I : Statistics 221-233. Univ. California Press, Berkeley, CA. · Zbl 0212.21504
[16] Hull, J. and White, A. (1987). The pricing of options on assets with stochastic volatilities. J. Finance 42 281-300. · Zbl 1126.91369
[17] Jensen, J. L. (2010). On some problems in the article Efficient likelihood estimation in state space models by Cheng-Der Fuh [Ann. Statist. 34 (2006) 2026-2068] [MR2283726]. Ann. Statist. 38 1279-1281. · Zbl 1373.62448
[18] Juang, B. H. and Rabiner, L. R. (1991). Hidden Markov models for speech recognition. Technometrics 33 251-272. · Zbl 0762.62036
[19] Kleptsyna, M. L. and Veretennikov, A. Y. (2008). On discrete time ergodic filters with wrong initial data. Probab. Theory Related Fields 141 411-444. · Zbl 1141.60337
[20] Le Gland, F. and Mevel, L. (2000). Basic properties of the projective product with application to products of column-allowable nonnegative matrices. Math. Control Signals Systems 13 41-62. · Zbl 0941.93012
[21] Le Gland, F. and Mevel, L. (2000). Exponential forgetting and geometric ergodicity in hidden Markov models. Math. Control Signals Systems 13 63-93. · Zbl 0941.93053
[22] Leroux, B. G. (1992). Maximum-likelihood estimation for hidden Markov models. Stochastic Process. Appl. 40 127-143. · Zbl 0738.62081
[23] Mamon, R. S. and Elliott, R. J., eds. (2007). Hidden Markov Models in Finance. International Series in Operations Research & Management Science 104 . Springer, New York. · Zbl 1116.91007
[24] Mevel, L. and Finesso, L. (2004). Asymptotical statistics of misspecified hidden Markov models. IEEE Trans. Automat. Control 49 1123-1132. · Zbl 1365.93528
[25] Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability . Springer, London. · Zbl 0925.60001
[26] Petrie, T. (1969). Probabilistic functions of finite state Markov chains. Ann. Math. Statist. 40 97-115. · Zbl 0181.21201
[27] Van Handel, R. (2008). Discrete time nonlinear filters with informative observations are stable. Electron. Commun. Probab. 13 562-575. · Zbl 1189.60133
[28] Walters, P. (1982). An Introduction to Ergodic Theory. Graduate Texts in Mathematics 79 . Springer, New York. · Zbl 0475.28009
[29] White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica 50 1-25. · Zbl 0478.62088
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.