zbMATH — the first resource for mathematics

On 5-gons and 5-holes. (English) Zbl 1374.52020
Márquez, Alberto (ed.) et al., Computational geometry. XIV Spanish meeting on computational geometry, EGC 2011, dedicated to Ferran Hurtado on the occasion of his 60th birthday, Alcalá de Henares, Spain, June 27–30, 2011. Revised selected papers. Berlin: Springer (ISBN 978-3-642-34190-8/pbk). Lecture Notes in Computer Science 7579, 1-13 (2012).
Summary: We consider an extension of a question of Erdős on the number of \(k\)-gons in a set of \(n\) points in the plane. Relaxing the convexity restriction we obtain results on 5-gons and 5-holes (empty 5-gons). In particular, we show a direct relation between the number of non-convex 5-gons and the rectilinear crossing number, provide an improved lower bound for the number of convex 5-holes any point set must contain, and prove that the number of general 5-holes is asymptotically maximized for point sets in convex position.
For the entire collection see [Zbl 1253.68016].

52C10 Erdős problems and related topics of discrete geometry
Full Text: DOI
[1] Ábrego, B.M., Fernández-Merchant, S., Leaǹos, J., Salazar, G.: A central approach to bound the number of crossings in a generalized configuration. Electronic Notes in Discrete Mathematics 30, 273–278 (2008) · Zbl 1341.05035 · doi:10.1016/j.endm.2008.01.047
[2] Aichholzer, O.: On the rectilinear crossing number, http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/crossing/ · Zbl 1110.65019
[3] Aichholzer, O.: [Empty] [colored] k-gons - Recent results on some Erdos-Szekeres type problems. In: Proc. XIII Encuentros de Geometría Computacional, ECG 2009, Zaragoza, Spain, pp. 43–52 (2009)
[4] Aichholzer, O., Fabila-Monroy, R., González-Aguilar, H., Hackl, T., Heredia, M.A., Huemer, C., Urrutia, J., Valtr, P., Vogtenhuber, B.: On k-gons and k-holes in point sets. In: Proc. 23th Canadian Conference on Computational Geometry, CCCG 2011, Toronto, Canada, pp. 21–26 (2011) · Zbl 1330.52019
[5] Aichholzer, O., Fabila-Monroy, R., González-Aguilar, H., Hackl, T., Heredia, M.A., Huemer, C., Urrutia, J., Vogtenhuber, B.: 4-holes in point sets. In: Proc. 27th European Workshop on Computational Geometry, EuroCG 2011, Morschach, Switzerland, pp. 115–118 (2011) · Zbl 1290.52010
[6] Aichholzer, O., Hackl, T., Vogtenhuber, B.: On 5-holes and 5-gons. In: Proc. XIV Encuentros de Geometría Computacional ECG2011, Alcalá de Henares, Spain, pp. 7–10 (2011) · Zbl 1374.52020
[7] Aichholzer, O., Krasser, H.: The point set order type data base: A collection of applications and results. In: Proc. 13th Canadian Conference on Computational Geometry, CCCG 2001, vol. 13, pp. 17–20 (2001)
[8] Bárány, I., Károlyi, G.: Problems and Results around the Erdos-Szekeres Convex Polygon Theorem. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 2000. LNCS, vol. 2098, pp. 91–105. Springer, Heidelberg (2001) · Zbl 0998.52004 · doi:10.1007/3-540-47738-1_7
[9] Bárány, I., Valtr, P.: Planar point sets with a small number of empty convex polygons. Studia Scientiarum Mathematicarum Hungarica 41(2), 243–266 (2004) · Zbl 1075.52008 · doi:10.1556/SScMath.41.2004.2.4
[10] Brass, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer (2005) · Zbl 1086.52001
[11] Dehnhardt, K.: Leere konvexe Vielecke in ebenen Punktmengen. Ph.D. thesis, TU Braunschweig, Germany (1987) · Zbl 0629.52016
[12] Erdos, P.: Some more problems on elementary geometry. Australian Mathematical Society Gazette 5, 52–54 (1978)
[13] Erdos, P., Guy, R.: Crossing number problems. The American Mathematical Monthly 88, 52–58 (1973) · Zbl 0264.05109 · doi:10.2307/2319261
[14] García, A.: A Note on the Number of Empty Triangles. In: Marquez, A., Ramos, P., Urrutia, J. (eds.) EGC 2011 (Hurtado Festschrift). LNCS, vol. 7579, pp. 249–257. Springer, Heidelberg (2012) · Zbl 1374.68663
[15] Gerken, T.: Empty convex hexagons in planar point sets. Discrete and Computational Geometry 39(1-3), 239–272 (2008) · Zbl 1184.52016 · doi:10.1007/s00454-007-9018-x
[16] Harborth, H.: Konvexe Fünfecke in ebenen Punktmengen. Elemente der Mathematik 33, 116–118 (1978) · Zbl 0397.52005
[17] Horton, J.: Sets with no empty convex 7-gons. Canadian Mathematical Bulletin 26(4), 482–484 (1983) · Zbl 0521.52010 · doi:10.4153/CMB-1983-077-8
[18] Huemer, C.: Personal communication (2011)
[19] Nicolás, C.: The empty hexagon theorem. Discrete and Computational Geometry 38(2), 389–397 (2007) · Zbl 1146.52010 · doi:10.1007/s00454-007-1343-6
[20] Valtr, P.: On empty pentagons and hexagons in planar point sets. In: Proc. 18th Computing: Australasian Theory Symposium, CATS 2012, Melbourne, Australia, pp. 47–48 (2012)
[21] Vogtenhuber, B.: Combinatorial Aspects of [Colored] Point Sets in the Plane. Ph.D. thesis, Institute for Software Technology, Graz University of Technology, Graz, Austria (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.