Prats, Martí Sobolev regularity of the Beurling transform on planar domains. (English) Zbl 1375.30026 Publ. Mat., Barc. 61, No. 2, 291-336 (2017). Summary: Consider a Lipschitz domain \(\Omega\) and the Beurling transform of its characteristic function \({\mathcal B} \chi_\Omega(z)= - \text{p.v.}\frac1{\pi z^2}*\chi_\Omega (z) \). It is shown that if the outward unit normal vector \(N\) of the boundary of the domain is in the trace space of \(W^{n,p}(\Omega)\) (i.e., the Besov space \(B^{n-1/p}_{p,p}(\partial\Omega)\)) then \(\mathcal{B} \chi_\Omega \in W^{n,p}(\Omega)\). Moreover, when \(p>2\) the boundedness of the Beurling transform on \(W^{n,p}(\Omega)\) follows. This fact has far-reaching consequences in the study of the regularity of quasiconformal solutions of the Beltrami equation. Cited in 7 Documents MSC: 30C62 Quasiconformal mappings in the complex plane 42B37 Harmonic analysis and PDEs 46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems Keywords:quasiconformal mappings; Sobolev spaces; Lipschitz domains; Beurling transform; David-Semmes betas; Peter Jones’ betas PDF BibTeX XML Cite \textit{M. Prats}, Publ. Mat., Barc. 61, No. 2, 291--336 (2017; Zbl 1375.30026) Full Text: DOI arXiv Euclid OpenURL