Jendrej, Jacek Construction of two-bubble solutions for the energy-critical NLS. (English) Zbl 1375.35492 Anal. PDE 10, No. 8, 1923-1959 (2017). Summary: We construct pure two-bubbles for the energy-critical focusing nonlinear Schrödinger equation in space dimension \(N \geq 7\). The constructed solution is global in (at least) one time direction and approaches a superposition of two stationary states both centered at the origin, with the ratio of their length scales converging to \(0\). One of the bubbles develops at scale \(1\), whereas the length scale of the other converges to \(0\) at rate \(|t|^{-\frac{2}{N-6}}\). The phases of the two bubbles form the right angle. Cited in 9 Documents MSC: 35Q55 NLS equations (nonlinear Schrödinger equations) 35B40 Asymptotic behavior of solutions to PDEs 35C08 Soliton solutions Keywords:nonlinear Schrödinger equation; energy-critical; multisoliton PDF BibTeX XML Cite \textit{J. Jendrej}, Anal. PDE 10, No. 8, 1923--1959 (2017; Zbl 1375.35492) Full Text: DOI arXiv OpenURL References: [1] ; Aubin, J. Math. Pures Appl. (9), 55, 269 (1976) [2] 10.1353/ajm.1999.0001 · Zbl 0919.35089 [3] 10.1090/S0894-0347-99-00283-0 · Zbl 0958.35126 [4] 10.1016/0362-546X(90)90023-A · Zbl 0706.35127 [5] 10.4007/annals.2008.167.767 · Zbl 1178.35345 [6] 10.1007/s00220-016-2795-4 · Zbl 1401.35178 [7] 10.1007/s00039-009-0707-x · Zbl 1232.35150 [8] 10.4171/JEMS/261 · Zbl 1230.35067 [9] 10.4310/CJM.2013.v1.n1.a3 · Zbl 1308.35143 [10] 10.1007/s00039-017-0418-7 · Zbl 1391.35276 [11] 10.1007/s00222-006-0011-4 · Zbl 1115.35125 [12] 10.1006/jdeq.2000.3951 · Zbl 1038.35119 [13] 10.1353/ajm.0.0107 · Zbl 1208.35138 [14] 10.1007/s00222-007-0089-3 · Zbl 1139.35021 [15] 10.1215/00127094-2009-005 · Zbl 1170.35066 [16] 10.1353/ajm.2005.0033 · Zbl 1090.35158 [17] 10.1007/BF02096981 · Zbl 0707.35021 [18] 10.1007/s00222-003-0346-z · Zbl 1067.35110 [19] 10.1007/s00220-004-1198-0 · Zbl 1062.35137 [20] 10.1155/S1073792898000270 · Zbl 0913.35126 [21] 10.1007/s00222-012-0427-y · Zbl 1326.35052 [22] 10.3934/cpaa.2016026 · Zbl 1352.35165 [23] ; Ortoleva, Algebra i Analiz, 25, 162 (2013) [24] 10.1007/s00220-014-1916-1 · Zbl 1300.35008 [25] 10.1353/ajm.2007.0004 · Zbl 1160.35067 [26] 10.1007/BF02418013 · Zbl 0353.46018 [27] ; Tao, New York J. Math., 11, 57 (2005) [28] 10.1215/S0012-7094-07-13825-0 · Zbl 1131.35081 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.