On the variational data assimilation problem solving and sensitivity analysis. (English) Zbl 1375.49036

Summary: We consider the variational data assimilation (VarDA) problem in an operational framework, namely, as it results when it is employed for the analysis of temperature and salinity variations of data collected in closed and semi closed seas. We present a computing approach to solve the main computational kernel at the heart of the VarDA problem, which outperforms the technique nowadays employed by the oceanographic operative software. The new approach is obtained by means of Tikhonov regularization. We provide the sensitivity analysis of this approach and we also study its performance in terms of the accuracy gain on the computed solution. We provide validations on two realistic oceanographic data sets.


49K40 Sensitivity, stability, well-posedness
86A05 Hydrology, hydrography, oceanography
Full Text: DOI Link


[1] Ababou, R.; Bagtzoglou, A. C.; Wood, E. F., On the condition number of covariance matrices in Kriging, estimation, and simulation of random fields, Math. Geol., 26, 1, 99-133, (1994) · Zbl 0970.86543
[2] Andersson, E.; Haseler, J.; Undén, P.; Courtier, P.; Kelly, G.; Vasiljevic, D.; Brancovic, C.; Cardinali, C.; Gaffard, C.; Hollingsworth, A.; Jakob, C.; Janssen, P.; Klinker, E.; Lanzinger, A.; Miller, M.; Rabier, F.; Simmons, A.; Strauss, B.; Thepaut, J-N.; Viterbo, P., The ECMWF implementation of three dimensional variational assimilation (3dvar). part III: experimental results, Q. J. R. Meteorol. Soc., 124, 550, 1831-1860, (1998)
[3] Arcucci, R.; D’Amore, L.; Carracciuolo, L., On the problem decomposition of scalable 4D-var data assimilation models, (HPCS-IEEE, (2015)), 589-594, 978-1-4673-7812-3
[4] Arcucci, R.; D’Amore, L.; Carracciuolo, L., A scalable numerical algorithm for solving Tikhonov regularization problems, (Lecture Notes in Computer Science, vol. 9574, (2016)), 45-54
[5] Baker, D. M.; Huang, W.; Guo, Y. R.; Bourgeois, J.; Xiao, Q. N., Three-dimensional variational data assimilation system for MM5: implementation and initial results, Mon. Weather Rev., 132, 897-914, (2004)
[6] Bauera, F.; Lukas, M. A., Comparing parameter choice methods for regularization of ill-posed problems, Math. Comput. Simul., 81, 9, 1795-1841, (2011) · Zbl 1220.65063
[7] Cacuci, D. G., Sensitivity theory for nonlinear systems. I. nonlinear functional analysis approach, J. Math. Phys., 22, 2794, (1981)
[8] Cacuci, D. G., Sensitivity and uncertainty analysis, (2003), Chapman & Hall/CRC NY · Zbl 1030.60001
[9] Cacuci, D. G.; Ionescu-Bujor, M.; Navon, I. M., Sensitivity and uncertainty analysis, Applications to Large-Scale Systems, vol. II, (2005), CRC Press
[10] Cacuci, D. G.; Navon, I. M.; Ionescu-Bujor, M., Computational methods for data evaluation and assimilation, (2013), CRC Press
[11] Campagna, R.; D’Amore, L.; Murli, A., An efficient algorithm for regularization of Laplace transform inversion in real case, J. Comput. Appl. Math., 210, 1-2, 84-98, (2007) · Zbl 1144.65078
[12] Courtier, P., A strategy for operational implementation of 4D-VAR, using an incremental approach, Q. J. R. Meteorol. Soc., 120, 519, 1367-1387, (1994)
[13] Daescu, D. N.; Navon, I. M., Sensitivity analysis in nonlinear variational data assimilation: theoretical aspects and applications, (Farago, Istvan; Zlatev, Zahari, Advanced Numerical Methods for Complex Environmental Models: Needs and Availability, (December 2013), Bentham Science Publishers) · Zbl 1370.76122
[14] Dahlquist, G.; Bjorck, A., Numerical methods, (1974), Prentice-Hall Englewood Cliffs, N.J.
[15] D’Amore, L.; Murli, A., Regularization of a Fourier series method for the Laplace transform inversion with real data, Inverse Probl., 18, 4, 1185-1205, (2002) · Zbl 1005.65139
[16] D’Amore, L.; Arcucci, R.; Marcellino, L.; Murli, A., A parallel three-dimensional variational data assimilation scheme, AIP Conf. Proc., 1389, 1829-1831, (2011)
[17] D’Amore, L.; Campagna, R.; Galletti, A.; Marcellino, L.; Murli, A., A smoothing spline that approximates Laplace transform functions only known on measurements on the real axis, Inverse Probl., 28, 2, (2012), (37 pages) · Zbl 1257.65074
[18] D’Amore, L.; Arcucci, R.; Carracciuolo, L.; Murli, A., DD-oceanvar: a domain decomposition fully parallel data assimilation software in Mediterranean sea, Proc. Comput. Sci., 18, 1235-1244, (2013)
[19] D’Amore, L.; Arcucci, R.; Carracciuolo, L.; Murli, A., A scalable variational data assimilation, J. Sci. Comput., 61, 239-257, (2014) · Zbl 1311.65056
[20] Dennis, J. E.; Schnabel, R. B., Numerical methods for unconstrained optimization and nonlinear equation, (1996), SIAM · Zbl 0847.65038
[21] Dobricic, S.; Pinardi, N., An oceanographic three-dimensional variational data assimilation scheme, Ocean Model., 22, 89-105, (2008)
[22] Ekstrom, M. P., A spectral characterization of the ill conditioning in numerical deconvolution, IEEE Trans. Audio Electroacoust., AU-21, 4, 344-348, (1973)
[23] Engl, H. K.; Hanke, M.; Neubauer, A., Regularization of inverse problems, (1996), Kluwer · Zbl 0859.65054
[24] Errico, R. M., What is an adjoint model, Bull. Am. Meteorol. Soc., 78, 2577-2591, (1997)
[25] Golub, G. H.; Heath, M.; Wahba, G., Generalized cross validation as a method for choosing a good ridge parameter, Technometrics, 21, 2, 215-223, (1979) · Zbl 0461.62059
[26] Golub, G. H.; Van Loan, C. F., Matrix computations, (1996), John Hopkins University Press · Zbl 0865.65009
[27] Haben, S. A., Conditioning and preconditioning of the minimisation problem in variational data assimilation, (2011), The University of Reading, PhD. thesis · Zbl 1433.86007
[28] Hannachi, A., A primer for EOF analysis of climate data, (2004), Department of Meteorology, University of Reading UK, Reading
[29] Hannachi, A.; Jolliffe, I. T.; Stephenson, D. B., Empirical orthogonal functions and related techniques in atmospheric science: a review, Int. J. Climatol., 1152, 1119-1152, (May 2007)
[30] Hansen, C., Rank-deficient and discrete ill-posed problems, Numerical Aspects of Linear Inversion, (1998), SIAM
[31] Hansen, P. C.; Nagy, J. G.; O’Leary, D. P., Deblurring images: matrices, spectra, and filtering, (2006), SIAM · Zbl 1112.68127
[32] Higham, N., Accuracy and stability of numerical algorithms, (2002), SIAM · Zbl 1011.65010
[33] Hofmann, B., Regularization for applied inverse and ill-posed problems, (1986), Teubner Leipzig · Zbl 0606.65038
[34] Kalnay, E., Atmospheric modeling, data assimilation and predictability, (2003), Cambridge
[35] Kostinski, A. B.; Koivunen, A. C., On the condition number of Gaussian sample covariance matrices, IEEE Trans. Geosci. Remote Sens., 38, 329-332, (2000)
[36] Lorenz, E. N., Empirical orthogonal functions and statistical weather prediction, (1956), M.I.T. Cambridge, MA, Sci. Rep., vol. 1, Statistical Forecasting Project
[37] Morozov, V. A., Methods for solving incorrectly posed problems, (1984), Springer New York, translation ed.: M.Z. Nashed
[38] Nagy, J. G.; O’Leary, D. P., Image deblurring: I can see clearly now, Comput. Sci. Eng., 82-84, (2003)
[39] Nichols, N., Mathematical concepts in data assimilation, (Lahoz, W.; etal., Data Assimilation, (2010), Springer)
[40] NEMO Web page
[41] Nocedal, J.; Byrd, R. H.; Lu, P.; Zhu, C., L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization, ACM Trans. Math. Softw., 23, 4, 550-560, (1997) · Zbl 0912.65057
[42] ROMS Web page
[43] Rotar, V. I., Probability and stochastic modeling, (2012), Chapman and Hall/CRC
[44] Wang, Y.; Navon, I. M.; Wang, X.; Cheng, Y., 2D Burgers equation with large Reynolds number using POD/DEIM and calibration, Int. J. Numer. Methods Fluids, 82, 12, 909-931, (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.