Grigoryan, Martin G. On the universal and strong \((L^1,L^\infty)\)-property related to Fourier-Walsh series. (English) Zbl 1376.42037 Banach J. Math. Anal. 11, No. 3, 698-712 (2017). Let \(r(x)\) be equal to \(1\) on \([0,1/2)\) and to \(-1\) on \([1/2,1)\) and be \(1\)-periodic. If \(n\in\mathbb Z_+=\{0,1,2,\dots\}\) is represented in the dyadic form \(n=\sum^\infty_{k=0}n_k2^k\), \(n_k\in\{0,1\}\), then the \(n\)-th Walsh-Paley function is defined by \[ \varphi_n(x)=\prod^\infty_{k=0}r^{n_k}_k(x), \quad r_k(x)=r(2^kx), \quad x\in [0,1). \] Since \(\{\varphi_n\}^\infty_{n=0}\) is orthonormal on \([0,1]\), the Fourier-Walsh coefficients \(c_n(f)\) are defined for \(f\in L^1[0,1)\) in a standard way. The main result of paper isTheorem 1.4. There exists a function \({U\in L^1}[0,1)\) with strictly decreasing Fourier-Walsh coeffcients \(\{c_k(U)\}^\infty_{k=0}\) such that, for any \(\delta\in(0,1)\) and for every almost everywhere finite measurable function \(f\) on \([0,1]\), one can find a function \(g\in L^\infty[0,1)\) with \(|\{x\in[0,1): g(x)\neq f(x)\}| <\delta\) such that \(c_k(g)=c_k(U)\), \(k\in\mathrm{spec}(g)\) and the Fourier-Walsh series of \(g\) converges uniformly on \([0,1)\).Here \(\mathrm{spec}(g)=\{k\in\mathbb Z_+: c_k(g)\neq 0\}\). Reviewer: Sergey S. Volosivets (Saratov) Cited in 14 Documents MSC: 42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.) 42A65 Completeness of sets of functions in one variable harmonic analysis 42A20 Convergence and absolute convergence of Fourier and trigonometric series Keywords:universal function; Fourier-Walsh coefficients; monotone coefficients × Cite Format Result Cite Review PDF Full Text: DOI Euclid