Omran, Maryam; Kiliçman, Adem On fractional order Mellin transform and some of its properties. (English) Zbl 1376.44005 Tbil. Math. J. 10, No. 1, 315-324 (2017). Summary: In this work, we introduce the fractional Mellin transform of order \(\alpha\), \(0 <\alpha\leq 1\) on a function which belongs to the Lizorkin space. Further, some properties and applications of fractional Mellin transform are given. Cited in 4 Documents MSC: 44A15 Special integral transforms (Legendre, Hilbert, etc.) 26A33 Fractional derivatives and integrals 42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type Keywords:Mellin transform; fractional Fourier transform; fractional Mellin transform; fractional operator × Cite Format Result Cite Review PDF Full Text: DOI References: [1] J. Bertrand, P. Bertrand, and J. Ovarlez, The Mellin transform, in The Transforms and Applications Handbook, D. Alexander, Ed., CRC Press, Boca Raton, Fla, USA, 2nd edition, (2000).; · Zbl 0900.42016 [2] R. Bracewell, The Fourier Transform and its Applications, New York (1965).; · Zbl 0149.08301 [3] P.L. Butzer, S. Jansche, A direct approach to the Mellin transform, Journal Fourier Analysis and Application (1997) 325-376.; · Zbl 0885.44004 [4] P.L. Butzer, S. Jansche, Mellin transform theory and the role of its differential and integral operators. In: Transform Methods and Special Functions, Varna 96 (Proc. 2nd Int. Workshop; P. Rusev, I. Dimovski, V. Kiryakova, Eds.), Bulg. Acad. Sci., So_a (1998), 63-83.; · Zbl 0923.44002 [5] B. Davies, Integral Transforms and their Applications, Springer, (2002).; · Zbl 0996.44001 [6] L. Debnath and D. Bhatta, Integral Transforms and Their Applications, Chapman and Hall/CRC, Boca Raton-London-New York, 2007.; · Zbl 1310.44001 [7] A. Erd_elyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Tables of Integral Transforms, Vols 1-2., McGraw-Hill (1953)-(1955).; [8] P. Flajolet, X. Gourdon, P. Dumas, Mellin transforms and asymptotics: Harmonic sums, Theo. Comp. Sci., 144(1-2), pp 3-58 (1995).; · Zbl 0869.68057 [9] P. Flajolet, M. Regnier and R. Sedgewick, Some uses of the Mellin integral transform in the analysis of algorithms, in: A. Apostolico and Z. Galil, eds., Combinatorial Algorithms on Words (Springer, Berlin, 1985).; · Zbl 0582.68015 [10] A. A. Kilbas, Yu. F. Luchko, H. Martinez, and J.J. Trujillo, Fractional Fourier transform in the framework of fractional calculus operators, Integral Transforms and Special Functions 21, pp. 779-795 (2010).; · Zbl 1205.42010 [11] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Vol. 204, Elsevier, Amsterdam, (2006).; · Zbl 1092.45003 [12] A. Kiliçman and M. Omran, Note on fractional Mellin transform and applications, Springer-Plus, 5(1) (2016): 100 .; · Zbl 1438.44002 [13] N. Lebedev, Special functions and their applications, Dover, (1972).; · Zbl 0271.33001 [14] Yu.F. Luchko and V. Kiryakova, The Mellin Integral Transform in Fractional Calculus, Fractional Calculus and Applied Analysis, vol(16)No.(2) pp.405-430 (2013).; · Zbl 1312.26016 [15] Yu.F. Luchko, H. Martínez and J.J. Trujillo, Fractional Fourier Transform and Some of its Applications, Fractional Calculus and Applied Analysis, An International Journal for Theory and Applications, 11, No. 4 (2008). [16] F. Oberhettinger, Tables of Mellin Transforms, Springer-Verlag, New York - Heidelberg - Berlin (1974).; [16] H.M. Ozaktas, Z. Zalevsky and M.A. Kutay, The Fractional Fourier Transform, Wiley, Chichester, (2001).; [17] H. Oldham and N. Spanier, The Fractional Calculus, Academic Press, San Diego, CA, (1974).; · Zbl 0292.26011 [18] I. Podlubny, Fractional Di_erential Equations, Academic Press, San Diego (1999); · Zbl 0924.34008 [19] L. G. Romero, R. A. Cerutti and L. L. Luque, A New Fractional Fourier Transform and Convolution Products, Int. Journal of Pure and Applied Mathematics, (66), No. 4 (2011), 397-408.; · Zbl 1218.26004 [20] I. N. Sneddon, Fourier Transforms, Dover Publications, New York, (1995).; · Zbl 0038.26801 [21] E.C. Titchmarsh, Introduction to the theory of Fourier integrals, Vol. 2. Oxford: Clarendon Press, (1948).; [22] D.V. Widder, An Introduction to Transform Theory, Academic Press, New York, (1971).; · Zbl 0219.44001 [23] X.-J. Yang, D. Baleanu and H. M. Srivastava, Local Fractional Integral Transforms and Their Applications, Academic Press (Elsevier Science Publishers), Amsterdam, Heidelberg, London and New York, (2016).; · Zbl 1336.44001 [24] H. M. Srivastava, A. K. Golmankhaneh, D. Baleanu and X.-J. Yang, Local fractional Sumudu transform with applications to IVPs on Cantor sets, Abstr. Appl. Anal. 2014 (2014), Article ID 620529, 1-7.; · Zbl 1468.26005 [25] H. M. Srivastava and O. Yürekli, A theorem on a Stieltjes-type integral transform and its applications, Complex Variables Theory Appl. 28 (1995), 159-168.; · Zbl 0837.44002 [26] G. Dattoli, H. M. Srivastava and K. Zhukovsky, A new family of integral transforms and their applications, Integral Transforms Spec. Funct. 17 (2006), 31-37.; · Zbl 1086.33009 [27] H. M. Srivastava, M.-J. Luo and R. K. Raina, A new integral transform and its applications, Acta Math. Sci. Ser. B Engl. Ed. 35 (2015), 1386-1400.; · Zbl 1349.44001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.