×

The topological sliceness of 3-strand pretzel knots. (English) Zbl 1376.57010

Applying the Casson-Gordon signature invariants of double branched covers, the author proves that an odd 3-strand pretzel knot is topologically slice if and only if either it is ribbon or has trivial Alexander polynomial, and that most topologically slice even 3-strand pretzel knots must be ribbon.

MSC:

57M25 Knots and links in the \(3\)-sphere (MSC2010)
57N70 Cobordism and concordance in topological manifolds
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] 10.1007/BF01403388 · Zbl 0145.17804
[2] ; Burde, Knots. de Gruyter Studies in Math., 5, (2003)
[3] ; Casson, Algebraic and geometric topology, 2. Proc. Sympos. Pure Math., XXXII, 39, (1978) · Zbl 0312.55003
[4] ; Casson, À la recherche de la topologie perdue. Progr. Math., 62, 181, (1986)
[5] 10.1090/S0002-9947-07-04176-1 · Zbl 1132.57004
[6] 10.1093/imrn/rnw068
[7] 10.1090/proc/13147 · Zbl 1351.57017
[8] 10.2307/1971306 · Zbl 0602.57013
[9] 10.4310/jdg/1214437136 · Zbl 0528.57011
[10] 10.2307/1998544 · Zbl 0509.57023
[11] 10.1353/ajm.2011.0022 · Zbl 1225.57006
[12] 10.1007/s00209-009-0548-1 · Zbl 1210.57006
[13] ; Jabuka, Osaka J. Math., 47, 977, (2010)
[14] ; Kirby, Algebraic and geometric topology, 2. Proc. Sympos. Pure Math., XXXII, 273, (1978)
[15] 10.2140/agt.2015.15.2133 · Zbl 1331.57012
[16] 10.2140/gt.2007.11.429 · Zbl 1185.57006
[17] ; Litherland, Topology of low-dimensional manifolds. Lecture Notes in Math., 722, 71, (1979)
[18] 10.1090/S0002-9939-01-05823-3 · Zbl 0971.57012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.