×

Arithmetic invariant theory. (English) Zbl 1377.11045

Howe, Roger E. (ed.) et al., Symmetry: representation theory and its applications. In honor of Nolan R. Wallach. New York, NY: Birkhäuser/Springer (ISBN 978-1-4939-1589-7/hbk; 978-1-4939-1590-3/ebook). Progress in Mathematics 257, 33-54 (2014).
Summary: Let \(k\) be a field, let \(G\) be a reductive algebraic group over \(k\), and let \(V\) be a linear representation of \(G\). Geometric invariant theory involves the study of the \(k\)-algebra of \(G\)-invariant polynomials on \(V\), and the relation between these invariants and the \(G\)-orbits on \(V\), usually under the hypothesis that the base field \(k\) is algebraically closed. In favorable cases, one can determine the geometric quotient \(V /\!/G = \mathrm{Spec}(\mathrm{Sym}^{{\ast}}(V ^{\vee })^{G})\) and can identify certain fibers of the morphism \(V \to V/\!/G\) with certain \(G\)-orbits on \(V\). In this paper we study the analogous problem when \(k\) is not algebraically closed. The additional complexity that arises in the orbit picture in this scenario is what we refer to as arithmetic invariant theory. We illustrate some of the issues that arise by considering the regular semisimple orbits – i.e., the closed orbits whose stabilizers have minimal dimension – in three arithmetically rich representations of the split odd special orthogonal group \(G = \mathrm{SO}_{2n+1}\).
For the entire collection see [Zbl 1306.00043].

MSC:

11E72 Galois cohomology of linear algebraic groups
14L24 Geometric invariant theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] M. Bhargava and W. Ho, Coregular spaces and genus one curves, ArXiv:1306.4424 (2013). · Zbl 1342.14074
[2] M. Bhargava and A. Shankar, Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves, ArXiv: 1006.1002 (2010); to appear Annals of Math. · Zbl 1307.11071
[3] N. Bourbaki, Groupes et algèbres de Lie, Hermann, 1982. · Zbl 0505.22006
[4] B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves I, J. Reine Angew. Math.212 (1963), 7-25. · Zbl 0118.27601
[5] R. Bolling, Die Ordnung der Schafarewitsch-Tate-Gruppe kann beliebig gross werden, Math. Nachr.67 (1975), 157-179. · Zbl 0314.14008
[6] D. A. Buell, Binary Quadratic Forms: Classical Theory and Modern Computations, Springer-Verlag, 1989. · Zbl 0698.10013
[7] R. Donagi, Group law on the intersection of two quadrics, Annali della Scuola Normale Superiore di Pisa7 (1980), 217-239. · Zbl 0457.14023
[8] B. Gross, On Bhargava’s representations and Vinberg’s invariant theory, In: Frontiers of Mathematical Sciences, International Press (2011), 317-321. · Zbl 1523.20079
[9] Gross, B.; Kohnen, W.; Zagier, D., Heegner points and derivatives of L-series II, Math. Ann., 278, 497-562 (1987) · Zbl 0641.14013 · doi:10.1007/BF01458081
[10] R. Kottwitz, Stable trace formula: cuspidal tempered terms, Duke Math. J.51 (1984), 611-650. · Zbl 0576.22020
[11] A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, The book of involutions, AMS Colloquium Publications 44, 1998. · Zbl 0955.16001
[12] A. Kostrikin and P. H. Tiep, Orthogonal decompositions and integral lattices, deGruyter Expositions in Mathematics 15, Berlin, 1994.
[13] R. Langlands, Stable conjugacy—definitions and lemmas, Canadian J. Math31 (1979), 700-725. · Zbl 0421.12013
[14] R. Langlands, Les débuts d’une formule des traces stable, Publ. Math. de L’Univ. Paris VII, 13, 1983. · Zbl 0532.22017
[15] A. Miller, Knots and arithmetic invariant theory, preprint.
[16] J. Milnor and D. Husemoller, Symmetric bilinear forms, Springer Ergebnisse 73, 1970. · Zbl 0292.10016
[17] D. Mumford, J. Fogarty, F. Kirwan, Geometric invariant theory, Springer Ergebnisse 34, 1994. · Zbl 0797.14004
[18] D. Panyushev, On invariant theory of θ-groups, J. Algebra283 (2005), 655-670. · Zbl 1071.17005
[19] Platonov, V.; Rapinchuk, A., Algebraic groups and number theory, Translated from the 1991 Russian original by Rachel Rowen, Pure and Applied Mathematics139 (1994), Boston, MA: Academic Press, Inc., Boston, MA · Zbl 0841.20046
[20] V. L. Popov and E. B. Vinberg, Invariant Theory in Algebraic Geometry IV, Encyclopaedia of Mathematical Sciences 55, Springer-Verlag, 1994. · Zbl 0788.00015
[21] J-P. Serre, Galois Cohomology, Springer Monographs in Mathematics, 2002. · Zbl 1004.12003
[22] J-P. Serre, A Course in Arithmetic, Springer GTM 7, (1978). · Zbl 0432.10001
[23] D. Shelstad Orbital integrals and a family of groups attached to a real reductive group, Ann. Sci. École Norm. Sup.12 (1979), 1-31. · Zbl 0433.22006
[24] M. Stoll, Implementing 2-descent for Jacobians of hyperelliptic curves, Acta Arith98 (2001), 245-277. · Zbl 0972.11058
[25] M. Wood, Moduli spaces for rings and ideals, Ph.D. thesis, Princeton University, 2008.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.