zbMATH — the first resource for mathematics

Extremal part of the PBW-filtration and nonsymmetric Macdonald polynomials. (English) Zbl 1378.17040
Summary: Given a reduced irreducible root system, the corresponding nil-DAHA is used to calculate the extremal coefficients of nonsymmetric Macdonald polynomials in the limit \(t\to\infty\) and for antidominant weights, which is an important ingredient of the new theory of nonsymmetric \(q\)-Whittaker function. These coefficients are pure \(q\)-powers and their degrees are expected to coincide in the untwisted setting with the extremal degrees of the so-called PBW-filtration in the corresponding finite-dimensional irreducible representations of the simple Lie algebras for any root systems. This is a particular case of a general conjecture in terms of the level-one Demazure modules. We prove this coincidence for all Lie algebras of classical type and for \(G_2\), and also establish the relations of our extremal degrees to minimal \(q\)-degrees of the extremal terms of the Kostant \(q\)-partition function; they coincide with the latter only for some root systems.

17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras
20C08 Hecke algebras and their representations
33D52 Basic orthogonal polynomials and functions associated with root systems (Macdonald polynomials, etc.)
Full Text: DOI arXiv
[1] Bourbaki, N., Groupes et algèbres de Lie, (1969), Hermann Paris, Ch. 4-6
[2] Braverman, A.; Finkelberg, M., Finite-difference quantum Toda lattice via equivariant K-theory, Transform. Groups, 10, 363-386, (2005) · Zbl 1122.17008
[3] Brylinski, R. K., Limits of weight spaces, Lusztig’s q-analogs and fiberings of adjoint orbits, J. Amer. Math. Soc., 2, 517-533, (1988) · Zbl 0729.17005
[4] Chari, V.; Loktev, S., Weyl, Demazure and fusion modules for the current algebra of \(\mathfrak{sl}_{r + 1}\), Adv. Math., 207, 928-960, (2006) · Zbl 1161.17318
[5] Cherednik, I., Nonsymmetric Macdonald polynomials, Int. Math. Res. Not. IMRN, 10, 483-515, (1995) · Zbl 0886.05121
[6] Cherednik, I., Double affine Hecke algebras, London Math. Soc. Lecture Note Ser., vol. 319, (2006), Cambridge University Press Cambridge · Zbl 1097.20007
[7] Cherednik, I., Whittaker limits of difference spherical functions, Int. Math. Res. Not. IMRN, 20, 3793-3842, (2009) · Zbl 1181.33017
[8] Cherednik, I.; Ma, X.; Cherednik, I.; Ma, X., Spherical and Whittaker functions via DAHA II, Selecta Math. (N.S.), Selecta Math. (N.S.), 19, 819-864, (2013) · Zbl 1293.20006
[9] Cherednik, I.; Orr, D., One-dimensional nil-DAHA and Whittaker functions, Transform. Groups, 18, 1, 23-59, (2013) · Zbl 1320.20004
[10] Cherednik, I.; Orr, D., Nonsymmetric difference Whittaker functions, Math. Z., 279, 3, 879-938, (2015) · Zbl 1372.20009
[11] Feigin, E., \(\mathbb{G}_a^M\) degeneration of flag varieties, Selecta Math., 18, 3, 513-537, (2012) · Zbl 1267.14064
[12] Feigin, E., Orbit closures and \(\mathbb{G}_a^N\)-toric degenerations
[13] Feigin, E.; Fourier, G.; Littelmann, P., PBW-filtration and bases for irreducible modules in type \(A_n\), Transform. Groups, 16, 1, 71-89, (2011) · Zbl 1237.17011
[14] Feigin, E.; Fourier, G.; Littelmann, P., PBW filtration and bases for symplectic Lie algebras, Int. Math. Res. Not. IMRN, 24, 5760-5784, (2011) · Zbl 1233.17007
[15] Feigin, E.; Fourier, G.; Littelmann, P., PBW-filtration over \(\mathbb{Z}\) and compatible bases for \(V_{\mathbb{Z}}(\lambda)\) in type \(A_n\) and \(C_n\), (Symmetries, Integrable Systems and Representations, (2013), Springer), 35-63 · Zbl 1323.17011
[16] Feigin, B.; Loktev, S., Multi-dimensional Weyl modules and symmetric functions, Comm. Math. Phys., 251, 3, 427-445, (2004) · Zbl 1100.17005
[17] Fomin, S.; Gelfand, S.; Postnikov, A., Quantum Schubert polynomials, J. Amer. Math. Soc., 10, 3, 565-596, (1997) · Zbl 0912.14018
[18] Fourier, G.; Littelmann, P., Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions, Adv. Math., 211, 2, 566-593, (2007) · Zbl 1114.22010
[19] Fulton, W.; Harris, J., Representation theory: A first course, (1991), Springer-Verlag · Zbl 0744.22001
[20] Givental, A.; Lee, Y.-P., Quantum K-theory on flag manifolds, finite-difference Toda lattices and quantum groups, Invent. Math., 151, 193-219, (2003) · Zbl 1051.14063
[21] Gornitsky, A., Essential signatures and canonical bases in irreducible representations of the group \(G_2\), (2011), Diploma thesis
[22] Haiman, M.; Haglund, J.; Loehr, N., A combinatorial formula for non-symmetric Macdonald polynomials, Amer. J. Math., 130, 2, 359-383, (2008) · Zbl 1246.05162
[23] Ion, B., Nonsymmetric Macdonald polynomials and Demazure characters, Duke Math. J., 116, 2, 299-318, (2003) · Zbl 1039.33008
[24] Ion, B., The Cherednik kernel and generalized exponents, Int. Math. Res. Not. IMRN, 2004, 36, 1869-1895, (2004) · Zbl 1079.17003
[25] Joseph, A.; Letzter, G.; Zelikson, S., On the brylinski-Kostant filtration, J. Amer. Math. Soc., 13, 4, 945-970, (2000) · Zbl 0991.17006
[26] Kostant, B., Lie group representations on polynomial rings, Amer. J. Math., 85, 327-404, (1963) · Zbl 0124.26802
[27] Lusztig, G., Singularities, character formulas, and a q-analogue of weight multiplicities, (Analysis and Topology on Singular Spaces, II, III, Luminy, 1981, Astérisque, vol. 101-102, (1983), Soc. Math. France Paris), 208-229
[28] Macdonald, I., Affine Hecke algebras and orthogonal polynomials, Sémin. Bourbaki, 47, 797, 01-18, (1995)
[29] Opdam, E., Harmonic analysis for certain representations of graded Hecke algebras, Acta Math., 175, 75-121, (1995) · Zbl 0836.43017
[30] Sanderson, Y., On the connection between Macdonald polynomials and Demazure characters, J. Algebraic Combin., 11, 269-275, (2000) · Zbl 0957.05106
[31] E. Vinberg, On some canonical bases of representation spaces of simple Lie algebras, Conference talk, Bielefeld, 2005.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.