zbMATH — the first resource for mathematics

On the \(f\)-vectors of Gelfand-Cetlin polytopes. (English) Zbl 1378.52010
Summary: A Gelfand-Cetlin polytope is a convex polytope obtained as an image of certain completely integrable system on a partial flag variety. In this paper, we give an equivalent description of the face structure of a GC-polytope in terms of so called the face structure of a ladder diagram. Using our description, we obtain a partial differential equation whose solution is the exponential generating function of \(f\)-vectors of GC-polytopes. This solves the open problem (2) posed by P. Gusev et al. [J. Comb. Theory, Ser. A 120, No. 4, 960–969 (2013; Zbl 1315.52009)].

52B05 Combinatorial properties of polytopes and polyhedra (number of faces, shortest paths, etc.)
52B11 \(n\)-dimensional polytopes
Full Text: DOI arXiv
[1] Audin, M., Topology of torus actions on symplectic manifolds, (Second revised edition, Progress in Mathematics, vol. 93, (2004), Birkhäuser Verlag Basel) · Zbl 1062.57040
[2] Batyrev, V.; Ciocan-Fontanine, I.; Kim, B.; Van Straten, D., Mirror symmetry and toric degenerations of partial flag manifolds, Acta Math., 184, 1, 1-39, (2000) · Zbl 1022.14014
[3] Gelfand, I. M.; Cetlin, M. L., Finite dimensional representations of the group of unimodular matrices, Dokl. Akad. Nauk USSR (NS), 71, 825-828, (1950)
[4] Guillemin, V.; Sternberg, S., The gel’fand-cetlin system and quantization of the complex flag manifolds, J. Funct. Anal., 52, 1, 106-128, (1983) · Zbl 0522.58021
[5] Gusev, P.; Kiritchenko, V.; Timorin, V., Counting vertices in Gelfand-zetlin polytopes, J. Combin. Theory Ser. A, 120, 4, 960-969, (2013) · Zbl 1315.52009
[6] Harada, M.; Kaveh, K., Integrable systems, toric degenerations and Okounkov bodies, Invent. Math., 202, 3, 927-985, (2015) · Zbl 1348.14122
[7] Kirichenko, V.; Smirnov, E.; Timorin, V., Schubert calculus and Gelfand-tsetlin polytopes, Uspekhi Mat. Nauk, 67, 4(406), 89-128, (2012), (in Russian), translation in Russian Math. Surveys 67(4) (2012) 685-719 · Zbl 1258.14055
[8] Kiritchenko, V., Gelfand-zetlin polytopes and flag varieties, Int. Math. Res. Not. IMRN, 13, 2512-2531, (2010) · Zbl 1213.14089
[9] Kogan, M., Schubert Geometry of Flag Varieties and Gelfand-Cetlin Theory, (2000), MIT, (Ph.D. Thesis)
[10] Kogan, M.; Miller, E., Toric degeneration of Schubert varieties and Gelfand-tsetlin polytopes, Adv. Math., 193, 1, 1-17, (2005) · Zbl 1084.14049
[11] Loera, J.; McAllister, T., Vertices of Gelfand-tsetlin polytopes, Discrete Comput. Geom., 32, 4, 459-470, (2004) · Zbl 1057.05077
[12] Nishinou, T.; Nohara, Y.; Ueda, K., Toric degenerations of Gelfand-cetlin systems and potential functions, Adv. Math., 224, 2, 648-706, (2010) · Zbl 1221.53122
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.