×

zbMATH — the first resource for mathematics

Automorphisms of the Torelli complex and the complex of separating curves. (English) Zbl 1378.57027
Summary: We compute the automorphism groups of the Torelli complex and the complex of separating curves for all but finitely many compact orientable surfaces. As an application, we show that the abstract commensurators of the Torelli group and the Johnson kernel for such surfaces are naturally isomorphic to the extended mapping class group.

MSC:
57M99 General low-dimensional topology
57S05 Topological properties of groups of homeomorphisms or diffeomorphisms
20F38 Other groups related to topology or analysis
57M07 Topological methods in group theory
57N05 Topology of the Euclidean \(2\)-space, \(2\)-manifolds (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] J. Behrstock and D. Margalit, Curve complexes and finite index subgroups of mapping class groups, Geom. Dedicata, 118 (2006), 71-85. · Zbl 1129.57023
[2] R. W. Bell and D. Margalit, Injections of Artin groups, Comment. Math. Helv., 82 (2007), 725-751. · Zbl 1148.20024
[3] P. Bellingeri, On presentations of surface braid groups, J. Algebra, 274 (2004), 543-563. · Zbl 1081.20045
[4] M. Bestvina, K.-U. Bux and D. Margalit, The dimension of the Torelli group, J. Amer. Math. Soc., 23 (2010), 61-105. · Zbl 1233.20033
[5] J. S. Birman, On braid groups, Comm. Pure Appl. Math., 22 (1969), 41-72. · Zbl 0157.30904
[6] J. S. Birman, On Siegel’s modular group, Math. Ann., 191 (1971), 59-68. · Zbl 0208.10601
[7] J. S. Birman, Braids, links, and mapping class groups, Ann. of Math. Stud., 82 , Princeton Univ. Press, Princeton, N.J., 1974.
[8] J. S. Birman, A. Lubotzky and J. McCarthy, Abelian and solvable subgroups of the mapping class groups, Duke Math. J., 50 (1983), 1107-1120. · Zbl 0551.57004
[9] T. Brendle and D. Margalit, Commensurations of the Johnson kernel, Geom. Topol., 8 (2004), 1361-1384. · Zbl 1079.57017
[10] T. Brendle and D. Margalit, Addendum to: Commensurations of the Johnson kernel, Geom. Topol., 12 (2008), 97-101. · Zbl 1128.57303
[11] B. Farb and N. V. Ivanov, The Torelli geometry and its applications: research announcement, Math. Res. Lett., 12 (2005), 293-301. · Zbl 1073.57012
[12] B. Farb and D. Margalit, A primer on mapping class groups, preprint, to appear in Princeton Math. Ser., Princeton Univ. Press, Princeton, NJ. · Zbl 1245.57002
[13] A. Fathi, F. Laudenbach and V. Poénaru, Travaux de Thurston sur les surfaces, Séminaire Orsay, Astérisque, Soc. Math. France, Paris, 1979, pp.,66-67.
[14] W. J. Harvey, Boundary structure of the modular group, in Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference, Ann. of Math. Stud., 97 , Princeton Univ. Press, Princeton, N.J., 1981, pp.,245-251. · Zbl 0461.30036
[15] E. Irmak, Superinjective simplicial maps of complexes of curves and injective homomorphisms of subgroups of mapping class groups, Topology, 43 (2004), 513-541. · Zbl 1052.57024
[16] E. Irmak, Superinjective simplicial maps of complexes of curves and injective homomorphisms of subgroups of mapping class groups II, Topology Appl., 153 (2006), 1309-1340. · Zbl 1100.57020
[17] E. Irmak, Complexes of nonseparating curves and mapping class groups, Michigan Math. J., 54 (2006), 81-110. · Zbl 1131.57019
[18] E. Irmak, N. V. Ivanov and J. D. McCarthy, Automorphisms of surface braid groups,
[19] N. V. Ivanov, Subgroups of Teichmüller modular groups, Transl. of Math. Monogr., 115 , Amer. Math. Soc., Providence, RI, 1992. · Zbl 0776.57001
[20] N. V. Ivanov, Automorphisms of complexes of curves and of Teichmüller spaces, Int. Math. Res. Not., 1997 , no.,14, 1997, pp.,651-666. · Zbl 0890.57018
[21] N. V. Ivanov, Mapping class groups, in Handbook of geometric topology, North-Holland, Amsterdam, 2002, pp.,523-633. · Zbl 1002.57001
[22] D. Johnson, Homeomorphisms of a surface which act trivially on homology, Proc. Amer. Math. Soc., 75 (1979), 119-125. · Zbl 0407.57003
[23] D. Johnson, Abelian quotients of the mapping class group \(\mathcal{I}_g\), Math. Ann., 249 (1980), 225-242. · Zbl 0409.57009
[24] D. Johnson, The structure of the Torelli group I: A finite set of generators for \(\mathcal{I}\), Ann. of Math. (2), 118 (1983), 423-442. · Zbl 0549.57006
[25] R. P. Kent IV, C. J. Leininger and S. Schleimer, Trees and mapping class groups, J. Reine Angew. Math., 637 (2009), 1-21. · Zbl 1190.57014
[26] M. Korkmaz, Automorphisms of complexes of curves on punctured spheres and on punctured tori, Topology Appl., 95 (1999), 85-111. · Zbl 0926.57012
[27] C. J. Leininger and D. Margalit, Abstract commensurators of braid groups, J. Algebra, 299 (2006), 447-455. · Zbl 1103.20034
[28] F. Luo, Automorphisms of the complex of curves, Topology, 39 (2000), 283-298. · Zbl 0951.32012
[29] J. D. McCarthy and W. R. Vautaw, Automorphisms of Torelli groups,
[30] D. McCullough and A. Miller, The genus 2 Torelli group is not finitely generated, Topology Appl., 22 (1986), 43-49. · Zbl 0579.57007
[31] G. Mess, The Torelli group for genus 2 and 3 surfaces, Topology, 31 (1992), 775-790. · Zbl 0772.57025
[32] L. Paris and D. Rolfsen, Geometric subgroups of surface braid groups, Ann. Inst. Fourier, 49 (1999), 417-472. · Zbl 0962.20028
[33] J. Powell, Two theorems on the mapping class group of surfaces, Proc. Amer. Math. Soc., 68 (1978), 347-350. · Zbl 0391.57009
[34] A. Putman, Cutting and pasting in the Torelli group, Geom. Topol., 11 (2007), 829-865. · Zbl 1157.57010
[35] A. Putman, A note on the connectivity of certain complexes associated to surfaces, Enseign. Math. (2), 54 (2008), 287-301. · Zbl 1182.57004
[36] K. J. Shackleton, Combinatorial rigidity in curve complexes and mapping class groups, Pacific J. Math., 230 (2007), 217-232. · Zbl 1165.57017
[37] W. R. Vautaw, Abelian subgroups of the Torelli group, Algebr. Geom. Topol., 2 (2002), 157-170. · Zbl 0997.57035
[38] W. R. Vautaw, Abelian subgroups and automorphisms of the Torelli group, Dissertation, Michigan State University, 2002. · Zbl 0997.57035
[39] P. Zhang, Automorphisms of braid groups on \(S^{2}\), \(T^{2}\), \(P^{2}\) and the Klein bottle \(K\), J. Knot Theory Ramifications, 17 (2008), 47-53. · Zbl 1148.20026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.