×

zbMATH — the first resource for mathematics

Small data global regularity for half-wave maps. (English) Zbl 1380.35119
Summary: We formulate the half-wave maps problem with target \(S^2\) and prove global regularity in sufficiently high spatial dimensions for a class of small critical data in Besov spaces.

MSC:
35L15 Initial value problems for second-order hyperbolic equations
35B40 Asymptotic behavior of solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35R11 Fractional partial differential equations
35L71 Second-order semilinear hyperbolic equations
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] 10.1016/S0370-2693(98)00505-X
[2] 10.1007/s00526-012-0556-6 · Zbl 1281.58007
[3] 10.1016/j.aim.2011.03.011 · Zbl 1219.58004
[4] 10.2140/apde.2011.4.149 · Zbl 1241.35035
[5] 10.1103/PhysRevLett.60.635
[6] 10.1143/JPSJ.62.469 · Zbl 0972.81525
[7] ; Krieger, Surveys in differential geometry, XII : Geometric flows. Surv. Differ. Geom., 12, 167, (2008)
[8] 10.1007/s00205-014-0776-3 · Zbl 1372.35291
[9] 10.1103/PhysRevLett.60.639
[10] ; Shatah, Geometric wave equations. Courant Lecture Notes in Mathematics, 2, (1998)
[11] ; Sterbenz, Comm. Partial Differential Equations, 29, 1505, (2004) · Zbl 1063.35120
[12] ; Tao, Internat. Math. Res. Notices, 299, (2001)
[13] 10.1007/PL00005588 · Zbl 1020.35046
[14] 10.1080/03605309808821400 · Zbl 0914.35083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.