×

zbMATH — the first resource for mathematics

Quantum spin chains with fractional revival. (English) Zbl 1380.82030
Summary: A systematic study of fractional revival at two sites in \(X X\) quantum spin chains is presented. Analytic models with this phenomenon are obtained by combining two basic ways of realizing fractional revival in a spin chain. The first proceeds through isospectral deformations of spin chains with perfect state transfer. The second makes use of couplings provided by the recurrence coefficients of polynomials with a bi-lattice orthogonality grid. The latter method leads to analytic models previously identified that can exhibit perfect state transfer in addition to fractional revival.

MSC:
82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bose, S., Contemp. Phys., 48, 13-30, (2007)
[2] Kay, A., Int. J. Quantum Inf., 8, 641-676, (2010)
[3] Nikolopoulos, G. M.; Jex, I., Quantum state transfer and network engineering, (2014), Springer · Zbl 1303.81038
[4] Robinett, R. W., Phys. Rep., 392, 1-2, 1-119, (2004)
[5] Berry, M.; Marzoli, I.; Schleich, W., Phys. World, 14, 39-46, (2001)
[6] Aronstein, D. L.; Stroud, C. R., Phys. Rev. A, 55, 6, 4526-4537, (1997)
[7] Chen, B.; Song, Z.; Sun, C.-P., Phys. Rev. A, 75, (2007)
[8] Banchi, L.; Compagno, E.; Bose, S., Phys. Rev. A, 91, (2015)
[9] V.X. Genest, L. Vinet, A. Zhedanov, Exact Fractional Revival in Spin Chains, 2015. arXiv:1506.08434. · Zbl 1380.82030
[10] Vinet, L.; Zhedanov, A., Phys. Rev. A, 85, (2012)
[11] Albanese, C.; Christandl, M.; Datta, N.; Ekert, A., Phys. Rev. Lett., 93, (2004)
[12] Rama Koteswara Rao, K.; Mahesh, T. S.; Kumar, A., Phys. Rev. A, 90, 1, (2014)
[13] Vinet, L.; Zhedanov, A., J. Phys. A, 45, 26, (2012)
[14] Chihara, T., (An Introduction to Orthogonal Polynomials, Dover Books on Mathematics, (2011), Dover Publications) · Zbl 0389.33008
[15] V.X. Genest, S. Tsujimoto, L. Vinet, A. Zhedanov, Persymmetric matrices, isospectral deformations and orthogonal polynomials. in preparation. arXiv:1605.00708. · Zbl 1375.65059
[16] Gladwell, G. M.L., (Inverse Problems in Vibration, Solid Mechanics and Its Applications, (2004), Springer)
[17] Koekoek, R.; Lesky, P. A.; Swarttouw, R. F., Hypergeometric orthogonal polynomials and their \(q\)-analogues, (2010), Springer · Zbl 1200.33012
[18] Shi, T.; Li, Y.; Song, Z.; Sun, C.-P., Phys. Rev. A, 71, (2005)
[19] Stoilova, N. I.; Van der Jeugt, J., SIGMA, 7, 33-45, (2011)
[20] Vinet, L.; Zhedanov, A., J. Phys. Conf. Ser., 343, (2012)
[21] Jafarov, E. I.; Van der Jeugt, J., J. Phys. A: Math. Gen., 43, (2010)
[22] Chakrabarti, R.; Van der Jeugt, J., J. Phys. A: Math. Gen., 43, (2010)
[23] Andrews, G.; Askey, R.; Roy, R., (Special Functions, Encyclopedia of Mathematics and its Applications, vol. 71, (2001), Cambridge University Press)
[24] Moorhead, S., Lieb-Robinson bounds and their applications, (2013), (Master’s thesis)
[25] Dai, L.; Feng, Y. P.; Kwek, L. C., J. Phys. A, 43, 3, (2010)
[26] Rosenblum, M., (Feintuch, A.; Gohberg, I., Nonselfadjoint Operators and Related Topics, Operator Theory: Advances and Applications, vol. 73, (1994), Springer)
[27] Vinet, L.; Zhedanov, A., Phys. Rev. A, 86, (2012)
[28] Godsil, C.; Kirkland, S.; Severini, S.; Smith, J., Phys. Rev. Lett., 109, (2012)
[29] Watkins, D. S., SIAM Rev., 35, 3, 430-471, (1993)
[30] Cantero, M. J.; Moral, L.; Velazquez, L., Linear Algebra Appl., 362, 29-56, (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.