×

Fractional partial differential equation: fractional total variation and fractional steepest descent approach-based multiscale denoising model for texture image. (English) Zbl 1381.35231

Summary: The traditional integer-order partial differential equation-based image denoising approaches often blur the edge and complex texture detail; thus, their denoising effects for texture image are not very good. To solve the problem, a fractional partial differential equation-based denoising model for texture image is proposed, which applies a novel mathematical method-fractional calculus to image processing from the view of system evolution. We know from previous studies that fractional-order calculus has some unique properties comparing to integer-order differential calculus that it can nonlinearly enhance complex texture detail during the digital image processing. The goal of the proposed model is to overcome the problems mentioned above by using the properties of fractional differential calculus. It extended traditional integer-order equation to a fractional order and proposed the fractional Green’s formula and the fractional Euler-Lagrange formula for two-dimensional image processing, and then a fractional partial differential equation based denoising model was proposed. The experimental results prove that the abilities of the proposed denoising model to preserve the high-frequency edge and complex texture information are obviously superior to those of traditional integral based algorithms, especially for texture detail rich images.

MSC:

35R11 Fractional partial differential equations
35Q94 PDEs in connection with information and communication
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Love, E. R., Fractional derivatives of imaginary order, Journal of the London Mathematical Society, 3, 241-259 (1971) · Zbl 0207.43902
[2] Oldham, K. B.; Spanier, The Fractional Calculus: Integrations and Differentiations of Arbitrary Order (1974), New York, NY, USA: Academic Press, New York, NY, USA
[3] McBride, A. C., Fractional Calculus (1986), New York, NY, USA: Halsted Press, New York, NY, USA
[4] Nishimoto, K., Fractional Calculus (1989), New Haven, Conn, USA: University of New Haven Press, New Haven, Conn, USA
[5] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications, xxxvi+976 (1993), Yverdon, Switzerland: Gordon and Breach Science Publishers, Yverdon, Switzerland · Zbl 0818.26003
[6] Miller, K. S., Derivatives of noninteger order, Mathematics Magazine, 68, 3, 183-192 (1995) · Zbl 0837.26006
[7] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications (1987), Yverdon, Switzerland: Gordon and Breach Science, Yverdon, Switzerland · Zbl 0617.26004
[8] Engheta, N., On fractional calculus and fractional multipoles in electromagnetism, Institute of Electrical and Electronics Engineers. Transactions on Antennas and Propagation, 44, 4, 554-566 (1996) · Zbl 0944.78506
[9] Engheta, N., On the role of fractional calculus in electromagnetic theory, IEEE Antennas and Propagation Magazine, 39, 4, 35-46 (1997)
[10] Chen, M.-P.; Srivastava, H. M., Fractional calculus operators and their applications involving power functions and summation of series, Applied Mathematics and Computation, 81, 2-3, 287-304 (1997)
[11] Butzer, P. L.; Westphal, U., An introduction to fractional calculus, Applications of Fractional Calculus in Physics, 1-85 (2000), Singapore: World Scientific, Singapore · Zbl 0987.26005
[12] Kempfle, S.; Schäfer, I.; Beyer, H., Fractional calculus via functional calculus: theory and applications, Nonlinear Dynamics, 29, 1-4, 99-127 (2002) · Zbl 1026.47010
[13] Magin, R. L., Fractional calculus in bioengineering, Critical Reviews in Biomedical Engineering, 32, 3-4, 195-377 (2004)
[14] Kilbas, A. A.; Srivastava, H. M.; Trujiilo, J. J., Theory and Applications of Fractional Differential Equations (2006), Amsterdam, The Netherlands: Elsevier, Amsterdam, The Netherlands
[15] Sabatier, J.; Agrawal, O. P.; Tenreiro Machado, J. A., Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering (2007), Dordrecht, The Netherlands: Springer, Dordrecht, The Netherlands · Zbl 1116.00014
[16] Koeller, R. C., Applications of fractional calculus to the theory of viscoelasticity, Journal of Applied Mechanics, 51, 2, 299-307 (1984) · Zbl 0544.73052
[17] Rossikhin, Y. A.; Shitikova, M. V., Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Applied Mechanics Reviews, 50, 1, 15-67 (1997)
[18] Manabe, S., A suggestion of fractional-order controller for flexible spacecraft attitude control, Nonlinear Dynamics, 29, 1-4, 251-268 (2002) · Zbl 1018.74028
[19] Chen, W.; Holm, S., Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency, Journal of the Acoustical Society of America, 115, 4, 1424-1430 (2004)
[20] Perrin, E.; Harba, R.; Berzin-Joseph, C.; Iribarren, I.; Bonami, A., Nth-order fractional Brownian motion and fractional Gaussian noises, IEEE Transactions on Signal Processing, 49, 5, 1049-1059 (2001)
[21] Tseng, C.-C., Design of fractional order digital FIR differentiators, IEEE Signal Processing Letters, 8, 3, 77-79 (2001)
[22] Chen, Y. Q.; Vinagre, B. M., A new IIR-type digital fractional order differentiator, Signal Processing, 83, 11, 2359-2365 (2003) · Zbl 1145.93423
[23] Pu, Y.-F., Research on application of fractional calculus to latest signal analysis and processing [Ph.D. thesis] (2006), Chengdu, China: Sichuan University, Chengdu, China
[24] Pu, Y.-F.; Yuan, X.; Liao, K.; Chen, Z.-L.; Zhou, J.-L., Five numerical algorithms of fractional calculus applied in modern signal analyzing and processing, Journal of Sichuan University, 37, 5, 118-124 (2005)
[25] Pu, Y.-F.; Yuan, X.; Liao, K.; Zhou, J.; Zhang, N.; Zeng, Y.; Pu, X., Structuring analog fractance circuit for 1/2 order fractional calculus, Proceedings of the IEEE 6th International Conference on ASIC (ASICON ’05)
[26] Pu, Y.-F.; Yuan, X.; Liao, K.; Zhou, J.-L., Implement any fractional order neural-type pulse oscillator with net-grid type analog fractance circuit, Journal of Sichuan University, 38, 1, 128-132 (2006)
[27] Duits, R.; Felsberg, M.; Florack, L., Scale spaces on a bounded domain, Proceedings of the 4th International Conference Scale Spaces · Zbl 1067.68732
[28] Didas, S.; Burgeth, B.; Imiya, A.; Weickert, J., Regularity and scale-space properties of fractional high order linear filtering, Proceedings of the 5th International Conference on Scale Space and PDE Methods in Computer Vision, Scale-Space, Hofgeismar, Germany
[29] Unser, M.; Blu, T., Fractional splines and wavelets, SIAM Review, 42, 1, 43-67 (2000) · Zbl 0940.41004
[30] Ninness, B., Estimation of 1/f noise, IEEE Transactions on Information Theory, 44, 1, 32-46 (1998) · Zbl 0905.94009
[31] Mathieu, B.; Melchior, P.; Oustaloup, A.; Ceyral, C., Fractional differentiation for edge detection, Signal Processing, 83, 11, 2421-2432 (2003) · Zbl 1145.94309
[32] Liu, S.-C.; Chang, S., Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification, IEEE Transactions on Image Processing, 6, 8, 1176-1184 (1997)
[33] Pu, Y.-F., Fractional calculus approach to texture of digital image, Proceedings of the IEEE 8th International Conference on Signal Processing (ICSP ’06)
[34] Pu, Y.-F., Fractional differential filter of digital image
[35] Pu, Y.-F., High precision fractional calculus filter of digital image
[36] Pu, Y.-F.; Wang, W.; Zhou, J.-L., Fractional differential approach to detecting textural features of digital image and its fractional differential filter implementation, Science in China Series F, 38, 12, 2252-2272 (2008)
[37] Pu, Y.-F.; Zhou, J.-L., A novel approach for multi-scale texture segmentation based on fractional differential, International Journal of Computer Mathematics, 88, 1, 58-78 (2011) · Zbl 1209.94013
[38] Pu, Y.-F.; Zhou, J.-L.; Yuan, X., Fractional differential mask: a fractional differential-based approach for multiscale texture enhancement, IEEE Transactions on Image Processing, 19, 2, 491-511 (2010) · Zbl 1371.94302
[39] Chan, T.; Esedoglu, S.; Park, F., Recent developments in total variation image restoration, Mathematical Models of Computer Vision (2005), New York, NY, USA: Springer, New York, NY, USA
[40] Buades, A.; Coll, B.; Morel, J. M., A review of image denoising algorithms, with a new one, Multiscale Modeling & Simulation, 4, 2, 490-530 (2005) · Zbl 1108.94004
[41] Weickert, J., Anisotropic Diffusion in Image Processing. Anisotropic Diffusion in Image Processing, European Consortium for Mathematics in Industry (1998), Stuttgart, Germany: B. G. Teubner, Stuttgart, Germany · Zbl 0886.68131
[42] Aubert, G.; Kornprobst, P., Mathematical Problems in Image Processing: Partial Differential Equationsand the Calculus of Variations. Mathematical Problems in Image Processing: Partial Differential Equationsand the Calculus of Variations, Applied Mathematical Sciences, 147 (2006), New York, NY, USA: Springer, New York, NY, USA · Zbl 1110.35001
[43] Perona, P.; Malik, J., Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 7, 629-639 (1990)
[44] Rudin, L. I.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D, 60, 1-4, 259-268 (1992) · Zbl 0780.49028
[45] Sapiro, G.; Ringach, D. L., Anisotropic diffusion of multivalued images with applications to color filtering, IEEE Transactions on Image Processing, 5, 11, 1582-1586 (1996)
[46] Blomgren, P.; Chan, T. F., Color TV: total variation methods for restoration of vector-valued images, IEEE Transactions on Image Processing, 7, 3, 304-309 (1998)
[47] Galatsanos, N. P.; Katsaggelos, A. K., Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation, IEEE Transactions on Image Processing, 1, 3, 322-336 (1992)
[48] Li, S. Z., Close-form solution and parameter selection for convex minimization-based edge-preserving smoothing, IEEE Transactions on Pattern Analysis and Machine Intelligence, 20, 9, 916-932 (1998)
[49] Nguyen, N.; Milanfar, P.; Golub, G., Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement, IEEE Transactions on Image Processing, 10, 9, 1299-1308 (2001) · Zbl 1037.68784
[50] Strong, D. M.; Aujol, J. F.; Chan, T. F., Scale recognition, regularization parameter selection, and Meyer’s G norm in total variation regularization, Multiscale Modeling & Simulation, 5, 1, 273-303 (2006) · Zbl 1161.68830
[51] Thompson, A. M.; Brown, J. C.; Kay, J. W.; Titterington, D. M., A study of methods of choosing the smoothing parameter in image restoration by regularization, IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, 4, 326-339 (1991)
[52] Mrázek, P.; Navara, M., Selection of optimal stopping time for nonlinear diffusion filtering, International Journal of Computer Vision, 52, 2-3, 189-203 (2003) · Zbl 1477.94018
[53] Gilboa, G.; Sochen, N.; Zeevi, Y. Y., Estimation of optimal PDE-based denoising in the SNR sense, IEEE Transactions on Image Processing, 15, 8, 2269-2280 (2006)
[54] Vogel, C. R.; Oman, M. E., Iterative methods for total variation denoising, SIAM Journal on Scientific Computing, 17, 1, 227-238 (1996) · Zbl 0847.65083
[55] Darbon, J.; Sigelle, M., Exact optimization of discrete constrained total variation minimization problems, Proceedings of the 10th nternational Workshop on Combinatorial Image AnalysisI (WCIA ’04) · Zbl 1113.68612
[56] Darbon, J.; Sigelle, M., Image restoration with discrete constrained total variation. I. Fast and exact optimization, Journal of Mathematical Imaging and Vision, 26, 3, 261-276 (2006) · Zbl 1478.94026
[57] Darbon, J.; Sigelle, M., Image restoration with discrete constrained total variation. II. Levelable functions, convex priors and non-convex cases, Journal of Mathematical Imaging and Vision, 26, 3, 277-291 (2006) · Zbl 1478.94025
[58] Wohlberg, B.; Rodriguez, P., An iteratively reweighted norm algorithm for minimization of total variation functionals, IEEE Signal Processing Letters, 14, 12, 948-951 (2007)
[59] Catté, F.; Lions, P. L.; Morel, J. M.; Coll, T., Image selective smoothing and edge detection by nonlinear diffusion, SIAM Journal on Numerical Analysis, 29, 1, 182-193 (1992) · Zbl 0746.65091
[60] Meyer, Y., Oscillating Patterns in Image Processing and in Some Nonlinear Evolution Equations (2001), Providence, RI, USA: The American Mathematical Society, Providence, RI, USA
[61] Strong, D.; Chan, T., Edge-preserving and scale-dependent properties of total variation regularization, Inverse Problems, 19, 6, S165-S187 (2003) · Zbl 1043.94512
[62] Alliney, S., A property of the minimum vectors of a regularizing functional defined by means of the absolute norm, IEEE Transactions on Signal Processing, 45, 4, 913-917 (1997)
[63] Nikolova, M., A variational approach to remove outliers and impulse noise, Journal of Mathematical Imaging and Vision, 20, 1-2, 99-120 (2004) · Zbl 1366.94065
[64] Chan, T. F.; Esedo\=glu, S., Aspects of total variation regularized \(L^1\) function approximation, SIAM Journal on Applied Mathematics, 65, 5, 1817-1837 (2005) · Zbl 1096.94004
[65] Nikolova, M., Minimizers of cost-functions involving nonsmooth data-fidelity terms, SIAM Journal on Numerical Analysis, 40, 3, 965-994 (2002) · Zbl 1018.49025
[66] Osher, S.; Burger, M.; Goldfarb, D.; Xu, J.; Yin, W., An iterative regularization method for total variation-based image restoration, Multiscale Modeling & Simulation, 4, 2, 460-489 (2005) · Zbl 1090.94003
[67] Gilboa, G.; Zeevi, Y. Y.; Sochen, N., Texture preserving variational denoising using an adaptive fidelity term, Proceedings of the 2nd IEEE Workshop on Variational, Geometric and Level Set Methods in Computer Vision (VLSM ’03)
[68] Esedoglu, S.; Osher, S. J., Decomposition of images by the anisotropic Rudin-Osher-Fatemi model, Communications on Pure and Applied Mathematics, 57, 12, 1609-1626 (2004) · Zbl 1083.49029
[69] Blomgren, P.; Chan, T. F.; Mulet, P., Extensions to total variation denoising, Proceedings of the SPIE on Advanced Signal Processing: Algorithms, Architectures and Implementations VII
[70] Blomgren, P.; Mulet, P.; Chan, T. F.; Wong, C. K., Total variation image restoration: numerical methods and extensions, Proceedings of the International Conference on Image Processing (ICIP ’97) · Zbl 1054.35035
[71] Chan, T.; Marquina, A.; Mulet, P., High-order total variation-based image restoration, SIAM Journal on Scientific Computing, 22, 2, 503-516 (2000) · Zbl 0968.68175
[72] You, Y. L.; Kaveh, M., Fourth-order partial differential equations for noise removal, IEEE Transactions on Image Processing, 9, 10, 1723-1730 (2000) · Zbl 0962.94011
[73] Lysaker, M.; Lundervold, A.; Tai, X. C., Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time, IEEE Transactions on Image Processing, 12, 12, 1579-1589 (2003) · Zbl 1286.94020
[74] Gilboa, G.; Sochen, N.; Zeevi, Y. Y., Image enhancement and denoising by complex diffusion processes, IEEE Transactions on Pattern Analysis and Machine Intelligence, 26, 8, 1020-1036 (2004)
[75] Chambolle, A.; Lions, P.-L., Image recovery via total variation minimization and related problems, Numerische Mathematik, 76, 2, 167-188 (1997) · Zbl 0874.68299
[76] Osher, S.; Solé, A.; Vese, L., Image decomposition and restoration using total variation minimization and the \(H^{- 1}\) norm, Multiscale Modeling & Simulation, 1, 3, 349-370 (2003) · Zbl 1051.49026
[77] Lysaker, M.; Tai, X. C., Iterative image restoration combining total variation minimization and a second-order functional, International Journal of Computer Vision, 66, 1, 5-18 (2006) · Zbl 1286.94021
[78] Li, F.; Shen, C.; Fan, J.; Shen, C., Image restoration combining a total variational filter and a fourth-order filter, Journal of Visual Communication and Image Representation, 18, 4, 322-330 (2007)
[79] Lysaker, M.; Osher, S.; Tai, X.-C., Noise removal using smoothed normals and surface fitting, IEEE Transactions on Image Processing, 13, 10, 1345-1357 (2004) · Zbl 1286.94022
[80] Dong, F.; Liu, Z.; Kong, D.; Liu, K., An improved LOT model for image restoration, Journal of Mathematical Imaging and Vision, 34, 1, 89-97 (2009)
[81] Guidotti, P.; Lambers, J. V., Two new nonlinear nonlocal diffusions for noise reduction, Journal of Mathematical Imaging and Vision, 33, 1, 25-37 (2009)
[82] Bai, J.; Feng, X.-C., Fractional-order anisotropic diffusion for image denoising, IEEE Transactions on Image Processing, 16, 10, 2492-2502 (2007) · Zbl 1119.76377
[83] Leitmann, G., The Calculus of Variations and Optimal Control: An Introduction (1981), New York, NY, USA: Springer, New York, NY, USA · Zbl 0475.49003
[84] Tarasov, V. E., Fractional vector calculus and fractional Maxwell’s equations, Annals of Physics, 323, 11, 2756-2778 (2008) · Zbl 1180.78003
[85] Rudin, W., Functional Analysis, 2nd Edition (1991), New York, NY, USA: McGraw-Hill, New York, NY, USA · Zbl 0867.46001
[86] Tomasi, C.; Manduchi, R., Bilateral filtering for gray and color images, Proceedings of the 1998 IEEE 6th International Conference on Computer Vision
[87] Zhang, M.; Gunturk, B. K., Multiresolution bilateral filtering for image denoising, IEEE Transactions on Image Processing, 17, 12, 2324-2333 (2008) · Zbl 1371.94455
[88] Yu, H.; Zhao, L.; Wang, H., Image denoising using trivariate shrinkage filter in the wavelet domain and joint bilateral filter in the spatial domain, IEEE Transactions on Image Processing, 18, 10, 2364-2369 (2009) · Zbl 1371.94443
[89] Do, M. N.; Vetterli, M., The contourlet transform: an efficient directional multiresolution image representation, IEEE Transactions on Image Processing, 14, 12, 2091-2106 (2005)
[90] Po, D. D.-Y.; Do, M. N., Directional multiscale modeling of images using the contourlet transform, IEEE Transactions on Image Processing, 15, 6, 1610-1620 (2006)
[91] Chen, G. Y.; Bui, T. D., Multiwavelets denoising using neighboring coefficients, IEEE Signal Processing Letters, 10, 7, 211-214 (2003)
[92] Buades, A.; Coll, B.; Morel, J.-M., A non-local algorithm for image denoising, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR ’05)
[93] Buades, A.; Coll, B.; Morel, J.-M., Nonlocal image and movie denoising, International Journal of Computer Vision, 76, 2, 123-139 (2008)
[94] Wang, Z.; Bovik, A. C.; Sheikh, H. R.; Simoncelli, E. P., Image quality assessment: from error visibility to structural similarity, IEEE Transactions on Image Processing, 13, 4, 600-612 (2004)
[95] Abramowitz, M.; Stegun, I., Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (1964), Washington, DC, USA: U.S. Department of Commerce, Washington, DC, USA · Zbl 0171.38503
[96] Halmos, P. R., Measure Theory (1950), New York, NY, USA: D. van Nostrand Company, New York, NY, USA
[97] Munroe, M. E., Introduction to Measure and Integration (1953), London, UK: Addison Wesley, London, UK · Zbl 0050.05603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.