×

The extended generalized half-normal distribution. (English) Zbl 1381.62033

Summary: Fatigue is a structural damage which occurs when a material is exposed to stress and tension fluctuations. We propose and study the extended generalized half-normal distribution for modeling skewed fatigue life data. The new model contains as special cases the half-normal and generalized half-normal distributions [K. Cooray and M. M. A. Ananda, Commun. Stat., Theory Methods 37, No. 9, 1323–1337 (2008; Zbl 1163.62006)]. Various of its structural properties are derived, including the density function, moments, quantile and generating functions, mean deviations and order statistics. We investigate maximum likelihood estimation of the model parameters. An application illustrates the potentiality of the new distribution.

MSC:

62E10 Characterization and structure theory of statistical distributions

Citations:

Zbl 1163.62006
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] Aarts, R. M. (2000). Lauricella functions. Available at . From MathWorld-A Wolfram Web Resouce, created by Eric W. Weisstein.
[2] Chen, G. and Balakrishnan, N. (1995). A general purpose approximate goodness-of-fit test. Journal of Quality Technology 27 , 154-161.
[3] Cooray, K. and Ananda, M. M. A. (2008). A generalization of the half-normal distribution with applications to lifetime data. Communications in Statistics. Theory and Methods 37 , 1323-1337. · Zbl 1163.62006 · doi:10.1080/03610920701826088
[4] Cordeiro, G. M., Ortega, E. M. M. and da Cunha, D. C. C. (2013). The exponentiated generalized class of distributions. Journal of Data Science 11 , 1-27.
[5] Gradshteyn, I. S. and Ryzhik, I. M. (2000). Table of Integrals, Series, and Products , 6th ed. San Diego, CA: Academic Press. · Zbl 0981.65001
[6] Kenney, J. F. and Keeping, E. S. (1962). Mathematics of Statistics, Pt. 1 , 3rd ed. Princeton, NJ: Van Nostrand. · Zbl 0058.34901
[7] Moors, J. J. A. (1998). A quantile alternative for kurtosis. Journal of the Royal Statistical Society. Series D. The Statistician 37 , 25-32.
[8] Nadarajah, S. and Kotz, S. (2006). The exponentiated-type distributions. Acta Applicandae Mathematicae 92 , 97-111. · Zbl 1128.62015 · doi:10.1007/s10440-006-9055-0
[9] Sharafi, M. and Behboodian, J. (2008). The Balakrishnan skew-normal density. Statistical Papers 49 , 769-778. · Zbl 1309.60008 · doi:10.1007/s00362-006-0038-z
[10] Pescim, R. R., Demétrio, C. G. B., Cordeiro, G. M., Ortega, E. M. M. and Urbano, M. R. (2010). The beta generalized half-normal distribution. Computational Statistics and Data Analysis 54 , 945-957. · Zbl 1465.62015
[11] Steinbrecher, G. (2002). Taylor expansion for inverse error function around origin. Working paper, Univ. Craiova.
[12] Trott, M. (2006). The Mathematica Guidebook for Symbolics . New York: Springer. · Zbl 1095.68001 · doi:10.1007/0-387-28815-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.