×

On the universal function for weighted spaces \(L^p_{\mu}[0,1], p\geq1\). (English) Zbl 1382.42016

Summary: In this article, we show that there exist a function \(g\in L^{1}[0,1]\) and a weight function \(0< \mu(x)\leq1\) so that \(g\) is universal for each class \(L^{p}_{\mu}[0,1]\), \(p\geq 1\), with respect to signs-subseries of its Fourier-Walsh series.

MSC:

42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.)
43A15 \(L^p\)-spaces and other function spaces on groups, semigroups, etc.
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid