Liu, Jianya; Sarnak, Peter The Möbius function and distal flows. (English) Zbl 1383.11094 Duke Math. J. 164, No. 7, 1353-1399 (2015). Summary: We prove that the Möbius function is linearly disjoint from an analytic skew product on the 2-torus. These flows are distal and can be irregular in the sense that their ergodic averages need not exist for all points. The previous cases for which such disjointness has been proved are all regular. We also establish the linear disjointness of the Möbius function from various distal homogeneous flows. Cited in 1 ReviewCited in 45 Documents MSC: 11L03 Trigonometric and exponential sums (general theory) 37A45 Relations of ergodic theory with number theory and harmonic analysis (MSC2010) 11N37 Asymptotic results on arithmetic functions Keywords:Möbius function; distal flow; affine linear map; skew product; nilmanifold × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] N. Aoki, Topological entropy of distal affine transformations on compact abelian groups , J. Math. Soc. Japan 23 (1971), 11-17. · Zbl 0206.31603 · doi:10.2969/jmsj/02310011 [2] J. Bourgain, On the correlation of the Moebius function with random rank-one systems , J. Anal. Math. 120 (2013), 105-130. · Zbl 1358.37017 · doi:10.1007/s11854-013-0016-z [3] J. Bourgain, P. Sarnak, and T. Ziegler, “Disjointness of Moebius from horocycle flows” in From Fourier Analysis and Number Theory to Radon Transforms and Geometry , Dev. Math. 28 , Springer, New York, 2013, 67-83. · Zbl 1336.37030 · doi:10.1007/978-1-4614-4075-8_5 [4] S. G. Dani, “Dynamical systems on homogeneous spaces” in Dynamical Systems, Ergodic Theory and Applications , Encyclopaedia Math. Sci. 100 , Springer, Berlin, 266-359. · Zbl 1360.37109 [5] H. Davenport, On some infinite series involving arithmetical functions, II , Quart. J. Math. 8 (1937), 313-350. · Zbl 0017.39101 [6] N. M. dos Santos and R. Urzúa-Luz, Minimal homeomorphisms on low-dimensional tori , Ergodic Theory Dynam. Systems 29 (2009), 1515-1528. · Zbl 1186.37006 · doi:10.1017/S0143385708000813 [7] H. Furstenberg, Strict ergodicity and transformation of the torus , Amer. J. Math. 83 (1961), 573-601. · Zbl 0178.38404 · doi:10.2307/2372899 [8] H. Furstenberg, The structure of distal flows , Amer. J. Math. 85 (1963), 477-515. · Zbl 0199.27202 · doi:10.2307/2373137 [9] B. Green and T. Tao, The Möbius function is strongly orthogonal to nilsequences , Ann. of Math. (2) 175 (2012), 541-566. · Zbl 1347.37019 · doi:10.4007/annals.2012.175.2.3 [10] B. Green and T. Tao, The quantitative behaviour of polynomial orbits on nilmanifolds , Ann. of Math. (2) 175 (2012), 465-540. · Zbl 1251.37012 · doi:10.4007/annals.2012.175.2.2 [11] F. J. Hahn, On affine transformations of compact abelian groups , Amer. J. Math. 85 (1963), 428-446. Errata , Amer. J. Math. 86 (1964), 463-464. · Zbl 0161.34305 · doi:10.2307/2373133 [12] H. Hoare and W. Parry, Affine transformations with quasi-discrete spectrum, I , J. London Math. Soc. 41 (1966), 88-96. · Zbl 0136.11501 · doi:10.1112/jlms/s1-41.1.88 [13] L. K. Hua, Additive Theory of Prime Numbers , Transl. Math. Monogr. 13 , Amer. Math. Soc., Providence, 1965. · Zbl 0192.39304 [14] H. Iwaniec and E. Kowalski, Analytic Number Theory , Amer. Math. Soc. Colloq. Publ. 53 , Amer. Math. Soc., Providence, 2004. · Zbl 1059.11001 [15] I. Kátai, A remark on a theorem of Daboussi , Acta Math. Hungar. 47 (1986), 223-225. · Zbl 0607.10034 · doi:10.1007/BF01949145 [16] A. Leibman, Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold , Ergodic Theory Dynam. Systems 25 (2005), 201-213. · Zbl 1080.37003 · doi:10.1017/S0143385704000215 [17] J. Liu and P. Sarnak, “The Möbius disjointness conjecture for distal flows” in Proceedings of the Sixth International Congress of Chinese Mathematicians , to appear, preprint, [math.NT]. arXiv:1406.7243v1 [18] C. Mauduit and J. Rivat, Sur un problème de Gelfond: la somme des chiffres des nombres premiers , Ann. of Math. (2) 171 (2010), 1591-1646. · Zbl 1213.11025 · doi:10.4007/annals.2010.171.1591 [19] P. Sarnak, Three lectures on the Möbius function, randomness and dynamics , preprint, (accessed 12 January 2010). [20] P. Sarnak, Mobius randomness and dynamics , Not. S. Afr. Math. Soc. 43 (2012), 89-97. [21] P. Sarnak and A. Ubis, The horocycle at prime times , J. Math. Pures Appl. (9) 103 (2015), 575-618. · Zbl 1307.11048 · doi:10.1016/j.matpur.2014.07.004 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.