Jiang, Zhaolin; Wei, Yunlan Skew circulant type matrices involving the sum of Fibonacci and Lucas numbers. (English) Zbl 1383.15027 Abstr. Appl. Anal. 2015, Article ID 951340, 9 p. (2015). Summary: Skew circulant and circulant matrices have been an ideal research area and hot issue for solving various differential equations. In this paper, the skew circulant type matrices with the sum of Fibonacci and Lucas numbers are discussed. The invertibility of the skew circulant type matrices is considered. The determinant and the inverse matrices are presented. Furthermore, the maximum column sum matrix norm, the spectral norm, the Euclidean (or Frobenius) norm, the maximum row sum matrix norm, and bounds for the spread of these matrices are given, respectively. Cited in 1 Document MSC: 15B05 Toeplitz, Cauchy, and related matrices 15B36 Matrices of integers PDF BibTeX XML Cite \textit{Z. Jiang} and \textit{Y. Wei}, Abstr. Appl. Anal. 2015, Article ID 951340, 9 p. (2015; Zbl 1383.15027) Full Text: DOI References: [1] Bertaccini, D.; Ng, M. K., Skew circulant preconditioners for systems of LMF-based, Numerical Analysis and Its Applications. Numerical Analysis and Its Applications, Lecture Notes in Computer Science, 93-101 (2001) · Zbl 0979.65064 [2] Claeyssen, J. R.; Davila, M.; Tsukazan, T., Factor circulant block matrices and even order undamped matrix differential equations, Matemática Aplicada e Computacional, 3, 1, 81-96 (1983) · Zbl 0523.15012 [3] Karasözen, B.; Şimşek, G., Energy preserving integration of bi-Hamiltonian partial differential equations, Applied and Engineering Mathematics, 26, 12, 1125-1133 (2013) · Zbl 1308.35249 [4] Meyer, A.; Rjasanow, S., An effective direct solution method for certain boundary element equations in 3D, Mathematical Methods in the Applied Sciences, 13, 1, 43-53 (1990) · Zbl 0703.65071 [5] Guo, S. J.; Chen, Y. M.; Wu, J. H., Equivariant normal forms for parameterized delay differential equations with applications to bifurcation theory, Acta Mathematica Sinica, 28, 4, 825-856 (2012) · Zbl 1334.34154 [6] Jin, X. Q.; Lei, S. L.; Wei, Y., Circulant preconditioners for solving singular perturbation delay differential equations, Numerical Linear Algebra with Applications, 12, 2-3, 327-336 (2005) · Zbl 1164.65395 [7] Liu, V. C.; Vaidyanathan, P. P., Circulant and skew-circulant matrices as new normal-form realization of IIR digital filters, IEEE Transactions on Circuits and Systems, 35, 6, 625-635 (1988) [8] Narasimha, M. J., Linear convolution using skew-cyclic convolutions, IEEE Signal Processing Letters, 14, 3, 173-176 (2007) [9] Fu, D. Q.; Jiang, Z. L.; Cui, Y. F.; Jhang, S. T., New fast algorithm for optimal design of block digital filters by skew-cyclic convolution, IET Signal Processing, 8, 6, 633-638 (2014) [10] Karner, H.; Schneid, J.; Ueberhuber, C. W., Spectral decomposition of real circulant matrices, Linear Algebra and Its Applications, 367, 301-311 (2003) · Zbl 1021.15007 [11] Li, J.; Jiang, Z.; Shen, N.; Zhou, J., On optimal backward perturbation analysis for the linear system with skew circulant coefficient matrix, Computational and Mathematical Methods in Medicine, 2013 (2013) · Zbl 1307.65041 [12] Davis, P. J., Circulant Matrices (1979), New York, NY, USA: John Wiley & Sons, New York, NY, USA [13] Jiang, Z. L.; Zhou, Z. X., Circulant Matrices (1999), Chengdu, China: Chengdu Technology University, Chengdu, China [14] Shen, S. Q.; Cen, J. M.; Hao, Y., On the determinants and inverses of circulant matrices with Fibonacci and Lucas numbers, Applied Mathematics and Computation, 217, 23, 9790-9797 (2011) · Zbl 1222.15010 [15] Gao, Y.; Jiang, Z. L.; Gong, Y. P., On the determinants and inverses of skew circulant and skew left circulant matrices with Fibonacci and Lucas numbers, WSEAS Transactions on Mathematics, 12, 4, 472-481 (2013) [16] Jiang, Z. L.; Yao, J. J.; Lu, F. L., On skew circulant type matrices involving any continuous Fibonacci numbers, Abstract and Applied Analysis, 2014 (2014) · Zbl 1470.11027 [17] Jiang, X. Y.; Hong, K., Exact determinants of some special circulant matrices involving four kinds of famous numbers, Abstract and Applied Analysis, 2014 (2014) · Zbl 1472.15006 [18] Jiang, Z.; Li, D., The invertibility, explicit determinants, and inverses of circulant and left circulant and \(g\)-circulant matrices involving any continuous Fibonacci and Lucas numbers, Abstract and Applied Analysis, 2014 (2014) · Zbl 1474.15081 [19] Solak, S., On the norms of circulant matrices with the Fibonacci and Lucas numbers, Applied Mathematics and Computation, 160, 1, 125-132 (2005) · Zbl 1066.15029 [20] İpek, A., On the spectral norms of circulant matrices with classical Fibonacci and Lucas numbers entries, Applied Mathematics and Computation, 217, 12, 6011-6012 (2011) · Zbl 1211.15028 [21] Mirsky, L., The spread of a matrix, Mathematika, 3, 127-130 (1956) · Zbl 0073.00903 [22] Sharma, R.; Kumar, R., Remark on upper bounds for the spread of a matrix, Linear Algebra and its Applications, 438, 11, 4359-4362 (2013) · Zbl 1281.15018 [23] Wu, J.; Zhang, P.; Liao, W., Upper bounds for the spread of a matrix, Linear Algebra and Its Applications, 437, 11, 2813-2822 (2012) · Zbl 1258.15004 [24] Johnson, C. R.; Kumar, R.; Wolkowicz, H., Lower bounds for the spread of a matrix, Linear Algebra and its Applications, 71, 161-173 (1985) · Zbl 0578.15013 [25] Jiang, Z.; Gong, Y.; Gao, Y., Invertibility and explicit inverses of circulant-type matrices with {\(k\)}-Fibonacci and {\(k\)}-Lucas numbers, Abstract and Applied Analysis, 2014 (2014) · Zbl 1473.15033 [26] Li, J.; Jiang, Z. L.; Lu, F. L., Determinants, norms, and the spread of circulant matrices with Tribonacci and generalized Lucas numbers, Abstract and Applied Analysis, 2014 (2014) · Zbl 1473.15013 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.