×

Norms and spread of the Fibonacci and Lucas RSFMLR circulant matrices. (English) Zbl 1383.15031

Summary: Circulant type matrices have played an important role in networks engineering. In this paper, firstly, some bounds for the norms and spread of Fibonacci row skew first-minus-last right (RSFMLR) circulant matrices and Lucas row skew first-minus-last right (RSFMLR) circulant matrices are given. Furthermore, the spectral norm of Hadamard product of a Fibonacci RSFMLR circulant matrix and a Lucas RSFMLR circulant matrix is obtained. Finally, the Frobenius norm of Kronecker product of a Fibonacci RSFMLR circulant matrix and a Lucas RSFMLR circulant matrix is presented.

MSC:

15B36 Matrices of integers
15B05 Toeplitz, Cauchy, and related matrices
15A60 Norms of matrices, numerical range, applications of functional analysis to matrix theory

References:

[1] Davis, P. J., Circulant Matrices (1979), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0418.15017
[2] Jiang, Z. L.; Zhou, Z. X., Circulant Matrices (1999), Chengdu, China: Chengdu Technology University Publishing Company, Chengdu, China
[3] Jiang, Z., On the minimal polynomials and the inverses of multilevel scaled factor circulant matrices, Abstract and Applied Analysis, 2014 (2014) · Zbl 1474.15072 · doi:10.1155/2014/521643
[4] Jiang, X.; Hong, K., Exact determinants of some special circulant matrices involving four kinds of famous numbers, Abstract and Applied Analysis, 2014 (2014) · Zbl 1472.15006 · doi:10.1155/2014/273680
[5] Noual, M.; Regnault, D.; Sené, S., About non-monotony in Boolean automata networks, Theoretical Computer Science, 504, 12-25 (2013) · Zbl 1297.68179 · doi:10.1016/j.tcs.2012.05.034
[6] Rocchesso, D.; Smith, J. O., Circulant and elliptic feedback delay networks for artificial reverberation, IEEE Transactions on Speech and Audio Processing, 5, 1, 51-63 (1997) · doi:10.1109/89.554269
[7] Aguiar, M. A.; Ruan, H., Interior symmetries and multiple eigenvalues for homogeneous networks, SIAM Journal on Applied Dynamical Systems, 11, 4, 1231-1269 (2012) · Zbl 1260.34066 · doi:10.1137/110851183
[8] Eghbali, H.; Muhaidat, S.; Hejazi, S. A.; Ding, Y., Relay selection strategies for single-carrier frequency-domain equalization multi-relay cooperative networks, IEEE Transactions on Wireless Communications, 12, 5, 2034-2045 (2013) · doi:10.1109/TWC.2013.032013.120168
[9] Wang, G.-Q.; Cheng, S. S., 6-periodic travelling waves in an artificial neural network with bang-bang control, Journal of Difference Equations and Applications, 18, 2, 261-304 (2012) · Zbl 1242.49011 · doi:10.1080/10236190903460396
[10] Kocer, E. G.; Tuglu, N.; Stakhov, A., On the \(m\)-extension of the Fibonacci and Lucas \(p\)-numbers, Chaos, Solitons and Fractals, 40, 4, 1890-1906 (2009) · Zbl 1198.11016 · doi:10.1016/j.chaos.2007.09.071
[11] Akbulak, M.; Bozkurt, D., On the norms of Toeplitz matrices involving Fibonacci and Lucas numbers, Hacettepe Journal of Mathematics and Statistics, 37, 2, 89-95 (2008) · Zbl 1204.15031
[12] Mathias, R., The spectral norm of a nonnegative matrix, Linear Algebra and Its Applications, 139, 269-284 (1990) · Zbl 0705.15012 · doi:10.1016/0024-37959090403-y
[13] Shen, S. Q.; Cen, J. M., On the spectral norms of r-circulant matrices with the k-fibonacci and k-lucas numbers, International Journal of Contemporary Mathematical Sciences, 5, 12, 569-578 (2010) · Zbl 1198.15016
[14] Shen, S. Q.; Cen, J. M., On the norms of circulant matrices with the (k, h)-fibonacci and (k, h)-lucas numbers, International Journal of Contemporary Mathematical Sciences, 6, 18, 887-894 (2011) · Zbl 1248.15020
[15] Solak, S.; Bozkurt, D., Some bounds on \(l_p\) matrix and \(l_p\) operator norms of almost circulant, CAUchy-Toeplitz and CAUchy-Hankel matrices, Mathematical & Computational Applications, 7, 3, 211-218 (2002) · Zbl 1012.15019
[16] Solak, S.; Bozkurt, D., On the spectral norms of Cauchy-Toeplitz and Cauchy-Hankel matrices, Applied Mathematics and Computation, 140, 2-3, 231-238 (2003) · Zbl 1033.15024 · doi:10.1016/s0096-30030200205-9
[17] Solak, S.; Bozkurt, D., A note on bound for norms of Cauchy-Hankel matrices, Numerical Linear Algebra with Applications, 10, 4, 377-382 (2003) · Zbl 1071.65537 · doi:10.1002/nla.290
[18] Solak, S., On the norms of circulant matrices with the Fibonacci and Lucas numbers, Applied Mathematics and Computation, 160, 1, 125-132 (2005) · Zbl 1066.15029 · doi:10.1016/j.amc.2003.08.126
[19] Solak, S., Erratum to “on the norms of circulant matrices with the Fibonacci and Lucas numbers”, Applied Mathematics and Computation, 160, 1, 125-132 (2005) · Zbl 1066.15029
[20] Solak, S., Erratum to “On the norms of circulant matrices with the Fibonacci and Lucas numbers” [Appl. Math. Comput. 160 (2005) 125-132], Applied Mathematics and Computation, 190, 2, 1855-1856 (2007) · Zbl 1130.15015 · doi:10.1016/j.amc.2007.02.075
[21] Yalc’iner, A., Spectral norms of some special circulant matrices, International Journal of Contemporary Mathematical Sciences, 3, 35, 1733-1738 (2008) · Zbl 1172.15015
[22] Chillag, D., Regular representations of semisimple algebras, separable field extensions, group characters, generalized circulants, and generalized cyclic codes, Linear Algebra and Its Applications, 218, 147-183 (1995) · Zbl 0839.20015 · doi:10.1016/0024-37959300167-x
[23] Visick, G., A quantitative version of the observation that the Hadamard product is a principal submatrix of the Kronecker product, Linear Algebra and Its Applications, 304, 1-3, 45-68 (2000) · Zbl 0946.15015 · doi:10.1016/s0024-37959900187-1
[24] Mirsky, L., The spread of a matrix, Mathematika, 3, 127-130 (1956) · Zbl 0073.00903
[25] Sharma, R.; Kumar, R., Remark on upper bounds for the spread of a matrix, Linear Algebra and its Applications, 438, 11, 4359-4362 (2013) · Zbl 1281.15018 · doi:10.1016/j.laa.2013.01.018
[26] Hu, J.; Wang, Z.; Gao, H., Recursive filtering with random parameter matrices, multiple fading measurements and correlated noises, Automatica, 49, 11, 3440-3448 (2013) · Zbl 1315.93081 · doi:10.1016/j.automatica.2013.08.021
[27] Ding, D.; Wang, Z.; Shen, B.; Shu, H., State-saturated \(H_\infty\) filtering with randomly occurring nonlinearities and packet dropouts: the finite-horizon case, International Journal of Robust and Nonlinear Control, 23, 16, 1803-1821 (2013) · Zbl 1285.93096 · doi:10.1002/rnc.2850
[28] Shen, B.; Wang, Z.; Ding, D.; Shu, H., \(H_\infty\) state estimation for complex networks with uncertain inner coupling and incomplete measurements, IEEE Transactions on Neural Networks and Learning Systems, 24, 12, 2027-2037 (2013) · doi:10.1109/tnnls.2013.2271357
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.