×

Existence and uniqueness of the solution of Lorentz-Rössler systems with random perturbations. (English) Zbl 1383.34080

Summary: We consider a new chaotic system based on merging two well-known systems (the Lorentz and Rössler systems). Meanwhile, taking into account the effect of environmental noise, we incorporate white-noise in each equation. We prove the existence, uniqueness, and the moments estimations of the Lorentz-Rössler systems. Numerical experiments show the applications of our systems and illustrate the results.

MSC:

34F05 Ordinary differential equations and systems with randomness
34H10 Chaos control for problems involving ordinary differential equations
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)

References:

[1] Lorentz, E. N., Determinstic nonperiodic flows, Journal of the Atmospheric Sciences, 12, 20, 130-141 (1963) · Zbl 1417.37129
[2] Peitgen, H.-O.; Jürgens, H.; Saupe, D., Chaos and Fractals, xvi+984 (1992), New York, NY, USA: Springer, New York, NY, USA · Zbl 0779.58004
[3] Haken, H., Analogy between higher instabilities in fluids and lasers, Physics Letters A, 53, 1, 77-78 (1975) · doi:10.1016/0375-9601(75)90353-9
[4] Gorman, M.; Widmann, P. J.; Robbins, K. A., Nonlinear dynamics of a convection loop: a quantitative comparison of experiment with theory, Physica D, 19, 2, 255-267 (1986) · Zbl 0588.76094 · doi:10.1016/0167-2789(86)90022-9
[5] Hemati, N., Strange attractors in brushless DC motors, IEEE Transactions on Circuits and Systems I, 41, 1, 40-45 (1994) · doi:10.1109/81.260218
[6] Cuomo, K. M., Circuit implementation of synchronized chaos with application to communications, Physical Review Letters, 71, 1, 65-68 (1993) · doi:10.1103/PhysRevLett.71.65
[7] Poland, D., Cooperative catalysis and chemical chaos: a chemical model for Lorentz equation, Physica D, 65, 1, 86-99 (1993) · Zbl 0772.34039 · doi:10.1016/0167-2789(93)90006-M
[8] Rössler, O. E., An equation for continuous chaos, Physics Letters A, 57, 5, 397-398 (1976) · Zbl 1371.37062 · doi:10.1016/0375-9601(76)90101-8
[9] Peifer, M.; Schelter, B.; Winterhalder, M.; Timmer, J., Mixing properties of the Rãssler system and consequences for coherence and synchronization analysis, Physical Review E, 72, 2 (2005) · doi:10.1103/PhysRevE.72.026213
[10] Itoh, M.; Yang, T.; Chua, L. O., Conditions for impulsive synchronization of chaotic and hyperchaotic systems, International Journal of Bifurcation and Chaos, 11, 2, 551-560 (2001) · Zbl 1090.37520 · doi:10.1142/S0218127401002262
[11] Chen, S. H.; Lü, J., Synchronization of an uncertain unified chaotic systems using backstepping design, Chaos Solitions & Fractals, 14, 643-647 (2002) · Zbl 1005.93020 · doi:10.1016/S0960-0779(02)00006-1
[12] Fang, J. Q.; Hong, Y.; Chen, G., Switching manifold approach to chaos synchronization, Physical Review E, 59, 3, 2523-2526 (1999) · doi:10.1103/PhysRevE.59.R2523
[13] Chen, G.; Dong, X., From Chaos to Order Methodologies Perspectives and Applications (1994), Singapore: World Scientific, Singapore
[14] Zhu, J.; Lü, J.; Yu, X., Flocking of multi-agent non-holonomic systems with proximity graphs, IEEE Transactions on Circuits and Systems I, 60, 1, 199-210 (2013) · Zbl 1468.93047 · doi:10.1109/TCSI.2012.2215715
[15] Wang, P.; Lü, J.; Ogorzalek, M. J., Global relative parameter sensitivities of the feed-forward loops in genetic networks, Neurocomputing, 78, 1, 155-165 (2012) · doi:10.1016/j.neucom.2011.05.034
[16] Lü, J.; Chen, G., A time-varying complex dynamical network model and its controlled synchronization criteria, IEEE Transactions on Automatic Control, 50, 6, 841-846 (2005) · Zbl 1365.93406 · doi:10.1109/TAC.2005.849233
[17] Lü, J.; Yu, X.; Chen, G.; Cheng, D., Characterizing the synchronizability of small-world dynamical networks, IEEE Transactions on Circuits and Systems I, 51, 4, 787-796 (2004) · Zbl 1374.34220 · doi:10.1109/TCSI.2004.823672
[18] Mao, X., Exponential Stability of Stochastic Differential Equations. Exponential Stability of Stochastic Differential Equations, Monographs and Textbooks in Pure and Applied Mathematics, 182, xii+307 (1994), New York, NY, USA: Marcel Dekker, New York, NY, USA · Zbl 0806.60044
[19] Liu, M.; Wang, K., Persistence, extinction and global asymptotical stability of a non-autonomous predator-prey model with random perturbation, Applied Mathematical Modelling, 36, 11, 5344-5353 (2012) · Zbl 1254.34074 · doi:10.1016/j.apm.2011.12.057
[20] Yang, Q.; Jiang, D., A note on asymptotic behaviors of stochastic population model with Allee effect, Applied Mathematical Modelling, 35, 9, 4611-4619 (2011) · Zbl 1225.34058 · doi:10.1016/j.apm.2011.03.034
[21] Cheng, S.-R., Stochastic population systems, Stochastic Analysis and Applications, 27, 4, 854-874 (2009) · Zbl 1180.92071 · doi:10.1080/07362990902844348
[22] Xing, Z.; Peng, J., Boundedness, persistence and extinction of a stochastic non-autonomous logistic system with time delays, Applied Mathematical Modelling, 36, 8, 3379-3386 (2012) · Zbl 1252.60058 · doi:10.1016/j.apm.2011.10.022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.