×

On the incompressible limit for the compressible flows of liquid crystals under strong stratification on bounded domains. (English) Zbl 1383.35166

Summary: We study the incompressible limit of weak solutions for the compressible flows of liquid crystals under strong stratification on bounded domains.

MSC:

35Q35 PDEs in connection with fluid mechanics
35D30 Weak solutions to PDEs
76A15 Liquid crystals
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Feireisl, E.; Novotný, A.; Petzeltová, H., On the incompressible limit for the Navier-Stokes-Fourier system in domains with wavy bottoms, Mathematical Models & Methods in Applied Sciences, 18, 2, 291-324 (2008) · Zbl 1158.35072 · doi:10.1142/S0218202508002681
[2] Wang, D.; Yu, C., Incompressible limit for the compressible flow of liquid crystals · Zbl 1309.35094
[3] Wang, D.; Yu, C., Global weak solution and large-time behavior for the compressible flow of liquid crystals, Archive for Rational Mechanics and Analysis, 204, 3, 881-915 (2012) · Zbl 1285.76005 · doi:10.1007/s00205-011-0488-x
[4] Liu, X.-G.; Qing, J., Globally weak solution to the flow of compressible liquid crystals system, Discrete and Continuous Dynamical Systems A, 33, 2, 757-788 (2013) · Zbl 1263.76058
[5] Klainerman, S.; Majda, A., Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Communications on Pure and Applied Mathematics, 34, 4, 481-524 (1981) · Zbl 0476.76068 · doi:10.1002/cpa.3160340405
[6] Lions, P.-L.; Masmoudi, N., Incompressible limit for a viscous compressible fluid, Journal de Mathématiques Pures et Appliquées, 77, 6, 585-627 (1998) · Zbl 0909.35101 · doi:10.1016/S0021-7824(98)80139-6
[7] Feireisl, E.; Novotný, A., Singular Limits in Thermodynamics of Viscous Fluids. Singular Limits in Thermodynamics of Viscous Fluids, Advances in Mathematical Fluid Mechanics (2009), Basel, Switzerland: Birkhäuser, Basel, Switzerland · Zbl 1176.35126 · doi:10.1007/978-3-7643-8843-0
[8] Feireisl, E.; Novotný, A., The low mach number limit for the full Navier-Stokes-Fourier system, Archive for Rational Mechanics and Analysis, 186, 1, 77-107 (2007) · Zbl 1147.76049 · doi:10.1007/s00205-007-0066-4
[9] Kwon, Y.-S.; Trivisa, K., On the incompressible limits for the full magnetohydrodynamics flows, Journal of Differential Equations, 251, 7, 1990-2023 (2011) · Zbl 1242.35051 · doi:10.1016/j.jde.2011.04.016
[10] Novotný, A.; Růocircužička, M.; Thäter, G., Singular limit of the equations of magnetohydrodynamics in the presence of strong stratification, Mathematical Models and Methods in Applied Sciences, 21, 1, 115-147 (2011) · Zbl 1429.76124 · doi:10.1142/S0218202511005003
[11] Lee, G.; Kim, P.; Kwon, Y.-S., Incompressible limit for the full magnetohydrodynamics flows under strong stratification, Journal of Mathematical Analysis and Applications, 387, 1, 221-240 (2012) · Zbl 1229.35210 · doi:10.1016/j.jmaa.2011.08.070
[12] Feireisl, E.; Novotný, A.; Petzeltová, H., Low Mach number limit for the Navier-Stokes system on unbounded domains under strong stratification, Communications in Partial Differential Equations, 35, 1, 68-88 (2010) · Zbl 1270.35340 · doi:10.1080/03605300903279377
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.