×

Solvability of a volume integral equation formulation for anisotropic elastodynamic scattering. (English) Zbl 1383.35226

Summary: This article investigates the solvability of volume integral equations arising in elastodynamic scattering by penetrable obstacles. The elasticity tensor and mass density are allowed to be smoothly heterogeneous inside the obstacle and may be discontinuous across the background-obstacle interface, the background elastic material being homogeneous. Both materials may be anisotropic, within certain limitations for the background medium. The volume integral equation associated with this problem is first derived, relying on known properties of the background fundamental tensor. To avoid difficulties associated with existing radiation conditions for anisotropic elastic media, we also propose a definition of the radiating character of transmission solutions. The unique solvability of the volume integral equation (and of the scattering problem) is established. For the important special case of isotropic background properties, our definition of a radiating solution is found to be equivalent to the Sommerfeld-Kupradze radiation conditions. Moreover, solvability for anisotropic elastostatics, directly related to known results on the equivalent inclusion method, is recovered as a by-product.

MSC:

35Q74 PDEs in connection with mechanics of deformable solids
35P25 Scattering theory for PDEs
35J15 Second-order elliptic equations
45F15 Systems of singular linear integral equations
74J20 Wave scattering in solid mechanics

References:

[1] H. Ammari and H. Kang, Polarization and moment tensors with applications to inverse problems and effective medium theory , Appl. Math. Sci. 162 , Springer-Verlag, New York, 2007. · Zbl 1220.35001
[2] M. Bonnet and G. Delgado, The topological derivative in anisotropic elasticity , Quart. J. Mech. Appl. Math. 66 (2013), 557-586. · Zbl 1291.74150 · doi:10.1093/qjmam/hbt018
[3] M. Born and E. Wolf, Principles of optics : Electromagnetic theory of propagation, interference and diffraction of light , Cambridge University Press, Cambridge, 1999. · Zbl 0086.41704
[4] V.T. Buchwald, Elastic waves in anisotropic media , Proc. Roy. Soc. Lond. 253 (1959), 563-580. · Zbl 0092.42304 · doi:10.1098/rspa.1959.0221
[5] D.E. Budreck and J.H. Rose, Three-dimensional inverse scattering in anisotropic elastic media , Inverse Prob. 6 (1990), 331-348. · Zbl 0707.73022 · doi:10.1088/0266-5611/6/3/004
[6] R. Burridge, P. Chadwick and A.N. Norris, Fundamental elastodynamic solutions for anisotropic media with ellipsoidal slowness surfaces , Proc. Roy. Soc. Lond. 440 (1993), 655-681. · Zbl 0793.73020 · doi:10.1098/rspa.1993.0039
[7] F. Cakoni and D. Colton, Qualitative methods in inverse scattering theory , Springer-Verlag, New York, 2006. · Zbl 1099.78008 · doi:10.1007/3-540-31230-7
[8] W.C. Chew, Waves and fields in inhomogeneous media . IEEE Press, New York, 1995.
[9] D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory , Springer-Verlag, New York, 1998. · Zbl 0893.35138
[10] M. Costabel, E. Darrigrand and E.H. Koné, Volume and surface integral equations for electromagnetic scattering by a dielectric body , J. Comp. Appl. Math. 234 (2010), 1817-1825. · Zbl 1192.78018 · doi:10.1016/j.cam.2009.08.033
[11] M. Costabel, E. Darrigrand and H. Sakly, The essential spectrum of the volume integral operator in electromagnetic scattering by a homogeneous body , Comp. Rend. Math. 350 (2012), 193-197. · Zbl 1247.78011 · doi:10.1016/j.crma.2012.01.017
[12] M. Costabel and M. Dauge, On representation formulas and radiation conditions , Math. Meth. Appl. Sci. 20 (1997), 133-150. · Zbl 0876.35021 · doi:10.1002/(SICI)1099-1476(19970125)20:2<133::AID-MMA841>3.0.CO;2-Y
[13] M. Costabel and E.P. Stephan, Integral equations for transmission problems in linear elasticity , J. Int. Equations Appl. 2 (1990), 211-223. · Zbl 0694.73008 · doi:10.1216/JIE-1990-2-2-211
[14] A.C. Eringen and E.S. Suhubi, Elastodynamics , Volume II- Linear theory , Academic Press, New York, 1975. · Zbl 0344.73036
[15] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order , Springer-Verlag, New York, 2001. · Zbl 1042.35002
[16] D. Gintides and K. Kiriaki, Solvability of the integrodifferential equation of Eshelby’s equivalent inclusion method , Quart. J. Mech. Appl. Math. 68 (2015), 85-96. · Zbl 1310.65164 · doi:10.1093/qjmam/hbu025
[17] D. Gridin, Far-field asymptotics of the Green’s tensor for a transversely isotropic solid , Proc. Roy. Soc. Lond. 456 (2000), 571-591. · Zbl 0991.74042 · doi:10.1098/rspa.2000.0531
[18] P. Hähner, A uniqueness theorem in inverse scattering of elastic waves , IMA J. Appl. Math. 51 (1993), 201-215. · Zbl 0798.73017 · doi:10.1093/imamat/51.3.201
[19] L. Hörmander, The analysis of linear partial differential operators , III, Springer-Verlag, New York, 1985.
[20] G.C. Hsiao and W.L. Wendland, Boundary integral equations , Springer, New York, 2008. · Zbl 1157.65066
[21] A. Kirsch, An integral equation approach and the interior transmission problem for Maxwell’s equations , Inv. Prob. Imag. 1 (2007), 107-127. · Zbl 1129.35080 · doi:10.3934/ipi.2007.1.159
[22] —-, An integral equation for Maxwell’s equations in a layered medium with an application to the factorization method , J. Integral Equations Appl. 19 (2007), 333-358. · Zbl 1136.78310 · doi:10.1216/jiea/1190905490
[23] —-, An integral equation for the scattering problem for an anisotropic medium and the factorization method , in Advanced Topics in scattering and biomedical engineering , A. Charalambopoulos, D.I. Fotiadis and D. Polyzos, eds., World Scientific, Singapore, 2008. · doi:10.1142/9789812814852_0007
[24] A. Kirsch and A. Lechleiter, The operator equations of Lippmann-Schwinger type for acoustic and electromagnetic scattering problems in \(L^2\) , Appl. Anal. 88 (2009), 807-830. · Zbl 1179.78053 · doi:10.1080/00036810903042125
[25] V.D. Kupradze, ed., Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity , North Holland, Amsterdam, 1979.
[26] W. Littman, Decay at infinity of solutions to partial differential equations with constant coefficients , Trans. Amer. Math. Soc. 123 (1966), 449-459. · Zbl 0144.13403 · doi:10.2307/1994667
[27] A. Madyarov and B.B. Guzina, A radiation condition for layered elastic media , J. Elast. 82 (2006), 73-98. · Zbl 1108.74028 · doi:10.1007/s10659-005-9027-z
[28] P.A. Martin, Acoustic scattering by inhomogeneous obstacles , SIAM J. Appl. Math. 64 (2003), 297-308. · Zbl 1063.76091 · doi:10.1137/S0036139902414379
[29] W. McLean, Strongly elliptic systems and boundary integral equations , Cambridge University Press, Cambridge, 2000. · Zbl 0948.35001
[30] T. Mura, Micromechanics of defects in solids , Martinus Nijhoff, Dordrecht, 1987. · Zbl 0652.73010
[31] D. Natroshvili, Boundary integral equation method in the steady state oscillation problems for anisotropic bodies , Math. Meth. Appl. Sci. 20 (1997), 95-119. · Zbl 0872.35115 · doi:10.1002/(SICI)1099-1476(19970125)20:2<95::AID-MMA839>3.0.CO;2-R
[32] G. Pelekanos, A. Abubakar and P.M. Van den Berg, Contrast source inversion methods in elastodynamics , J. Acoust. Soc. Amer. 114 (2003), 2825-2834.
[33] R. Potthast, Electromagnetic scattering from an orthotropic medium , J. Integral Equations Appl. 11 (1999), 197-215. · Zbl 0980.78004 · doi:10.1216/jiea/1181074315
[34] J.M. Richardson, Scattering of elastic waves from symmetric inhomogeneities at low frequencies , Wave Motion 6 (1984), 325-336. · Zbl 0542.73034 · doi:10.1016/0165-2125(84)90036-2
[35] T. Touhei, A fast volume integral equation method for elastic wave propagation in a half space , Int. J. Solids Struct. 48 (2011), 3194-3208.
[36] B.R. Vainberg, Principles of radiation, limit absorption and limit amplitude in the general theory of partial differential equations , Russian Math. Surv. 21 (1966), 115-193.
[37] C.Y. Wang and J.D. Achenbach, Three-dimensional time-harmonic elastodynamic Green’s functions for anisotropic solids , Proc. Roy. Soc. Lond. 449 (1995), 441-458. · Zbl 0852.73011 · doi:10.1098/rspa.1995.0052
[38] J.R. Willis, A polarization approach to the scattering of elastic waves -II. Multiple scattering from inclusions , J. Mech. Phys. Solids 28 (1980), 307-327. · Zbl 0461.73013 · doi:10.1016/0022-5096(80)90022-8
[39] —-, Polarization approach to the scattering of elastic waves -I. Scattering by a single inclusion , J. Mech. Phys. Solids 28 (1980), 287-305. · Zbl 0461.73012 · doi:10.1016/0022-5096(80)90021-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.